• Title/Summary/Keyword: 무한 보강 원통쉘

Search Result 2, Processing Time 0.016 seconds

Acoustic radiation from resiliently mounted machinery in fluid loaded infinite cylindrical shell with periodic ring supports (보강 원통형 쉘에 탄성 지지된 기계류에 의한 수중 음향 방사)

  • Bae, Soo Ryong;Jung, Woo Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.644-649
    • /
    • 2014
  • Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring supports. Transmitted force from machine to a shell can be different by the impedance of shell. In this paper the transmitted force from machinery to a infinite shell through vibration isolator is considered by the impedance of shell. The effect of the shell impedance for acoustic radiation is investigated.

  • PDF

Analysis of Underwater Acoustic Radiation of SWATH vessel using Transfer Function Method (전달함수법을 이용한 SWATH선의 수중 음향 방사 해석)

  • 김재호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.20-34
    • /
    • 2003
  • The good sea-keeping capability of the SWATH(Small Waterplane Area Twin Hull) ship has been attractive for research or surveillance vessels. Especially, for the naval ships accomplishing the underwater acoustic missions, it is necessary to access and minimize the underwater radiated noise level generated by the ships. Therefore, acoustic signature management and control are very important topics for these vessels. Underwater radiation pattern in the low frequency range is dominated by the tonals from the vibration of onboard machinery. In this work, the radiated noise level generated by the propulsion machine in the submerged hull is predicted using the transfer function technique and the hull transfer function for the submerged hull is determined by analyzing the longitudinal/circumferential stiffened infinitely long cylindrical shell and considering the empirical database of the previous vessels. It is confirmed that the transfer function technique can give useful information for identifying the noise source and estimating its contribution to the total radiatied noise level.