• Title/Summary/Keyword: 무한사면파괴

Search Result 23, Processing Time 0.027 seconds

A Study of Stability Analysis on Unsaturated Soil Slopes Considering Rainfall (강우를 고려한 불포화 토사사면의 안정해석 연구)

  • Kim, Khi-Woong;Kim, Bum-Joo;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common in Korea. This study examines an infinite slope analysis to estimate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Approximate method which is based on the Green-Ampt model have been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods. Pradel & Raad method which is devised to predict the depth of wetting front to decomposed granite soil slopes having measured soil-water characteristic curves. To compare the results with those obtained from the Pradel & Raad method, a series of numerical analysis using SEEP/W were carried out. It was found that the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of decomposed granite soils was found to be a proper analysis for shallow slope failures due to rainfall.

  • PDF

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition (정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.5-15
    • /
    • 2013
  • In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.

The Stability Analysis Method with the Failure Shape in Cutting Slopes (절취사면에서의 파괴형태에 따른 안정해석방법)

  • Kang, Yea Mook;Chee, In Taeg;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 1998
  • This study was carried out to investigate the problem of analysis method of circular sliding, which uses a high rate to work out a countermeasure for landslides. The results of this study were summarized as follows : 1. As a result of the analysis of sliding surface along the soil layers in forty model slopes, the boundary layer in weathered soil and weathered rock indicated a very high possibility of sliding than in other places. 2. Because most landslides in Korea occur along the discontinuity face at the boundary of soil layers, below 2m. from land surface, it is a good method for safe design to work the countermeasure for these kinds of landslides in cutting slopes. 3. When the inclination of slopes is fixed and the length of slopes is changed, the cercular sliding slopes were more safe as the soil layers are more shallow and the length of slopes are shorter, but the safety ratio of infinite sliding slopes was same as the other even though their length of slopes was different. 4. As a result of the analysis by cercular sliding analysis method and infinite sliding analysis method with some condition that the inclination of slopes was $30^{\circ}$ degree, because most landslides in Korea occur at this condition, these methods indicated different results to each other as well as cercular sliding analysis method showed too much safety ratio than infinite sliding analysis method.

  • PDF

Stability Investigation of the Large Size Heap of Coal Associated Wastes (석탄광산에서 발생된 대규모 폐광석 더미에 대한 안정성 검토)

  • Kang Gi-Chun;Ahn Nam-Kyu;Oh Je-Ill;Kim Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.133-144
    • /
    • 2005
  • Stability investigations were conducted for the heap of coal associated wastes occurred from D mine located in Gang-Won Province from the geotechnical and environmental engineering aspect, and a countermeasure was also examined to increase the stability in this area. Quality of water flowed from the heap of coal associated wastes was identified as Am. Slope stability investigations were conducted with both circular failure analyses using SLOPILE program and planar failure analyses in cases of dry, rainy, and ordinary slopes. The results of circular failure analyses indicated that the factor of safety is 0.78 for rainy case. for planar failure analyses, the factor of safety decreases with increase the depth and reaches below 1 about 4m depth for rainy case. A retaining wall system with backfill using the recycled-concrete aggregates as a practical scheme was suggested to satisfy both demands: reducing Am generation, and enhancing slope stability in the deposits of coal associated wastes.

Adequacy Evaluation of Stability Analyses Considering Rainfall Infiltration on Railroad Cut-off Soil Slopes (철도연변 절취 토사사면에 대한 강우에 의한 침투를 고려한 사면안정해석법의 적용성 평가)

  • Lee Su-Hyung;Hwang Seon-Keun;Sagong Myung;Kim Hyun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.137-146
    • /
    • 2005
  • 299 railroad slopes were investigated and the failure characteristics and reinforcement patterns were analyzed. Stability analyses on the 14 cut-off soil slopes were carried out. Surficial failures were predicted by infinite slope analyses assuming the temporarily perched ground water table at soil surface during rainfall period. Limit equilibrium analyses were also carried out and the influences of rainfall infiltration on the slope stabilities were taken Into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The adequacy of those analyses was evaluated by comparing the slope failure characteristics between analysis results and the past failure records. From the comparison results, it was deduced that the limit equilibrium analyses were not appropriate to estimate the shallow failure that occurred at most of the railroad cut-off soil slopes. For the better estimation of the surficial failure, not only the increase of pore-water pressure (reduction of matric suction), but also the influence of water flows over slope surface which erode soil mass, should be evaluated and considered.

Preliminary Study on the Co-relation between the Water Infiltration and the Shallow Slope Failure (지표수 침투와 천부 사면파괴와의 관계에 관한 기초연구)

  • 송원경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.33-44
    • /
    • 1998
  • Preliminary study has been conducted to analyse the co-relation between shallow landslides frequently occurring in rainy seasons and the water infiltration into the slope. The change of stress state due to partial saturation of a soil and hence the reduction of its shear strength have been reviewed. The variation of the safety factor of an infinite planar slope in accordance with various water infiltration scenarios has been estimated by limit equilibrium method to explain the mechanism of shallow slope failure. Numerical analysis under the same condition as those of some models dealt with in the previous method has been carried out by using FLAC, a finite difference program, and the results have been compared with the ones obtained by limit equilibrium method. Both results proved to be identical, which implies the ability of the numerical approach to the problems related to the stability analysis of unsaturated slope with the irregular geometry. Further improvement, however, should be made to apply the present analysis procedure to general slopes since it deals with a simple one.

  • PDF

Infiltration Analysis for Surficial Stability Evaluation of Two-layered Slopes (2층 지반의 표면파괴에 대한 안정성 평가를 위한 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.45-53
    • /
    • 2005
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common over the world. Therefore, this study examines an approximate method to estimate the influence of infiltration on surficial stability of slopes by one-dimensional infiltration model. Modified GAML model based on the Green-Ampt model was extended to predict the infiltration behavior of two-layered slope. Then, the model has been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods in two-layered soil profile. The results obtained from the approximate method were compared with those obtained from numerical analyses. According to the results, with the use of properly estimated input parameters, the proposed method was found to give good results that agree reasonably well to those of the more rigorous finite element analyses.

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

Probabilistic Analysis for Stability Evaluation of Landslides Using Geo-spatial Information (지형공간 정보를 활용한 산사태 안정평가의 확률론적 해석)

  • Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.55-62
    • /
    • 2006
  • The purpose of the current research is to evaluate the possibility of landslides by using geo-spatial information system. Geological information has been summarized and stability analysis for infinite slopes has been conducted based on the force equilibrium. In addition, the analysis of landslides was performed based on probabilistic approach by using probabilistic variables which can include uncertainty of input parameters. For the purpose of testifing the applicability of the analysis method actual geological data from a construction site was obtained, thereby performing both a preliminary analysis for a large area and detailed analysis for a better result. As a result of the current analysis several issues such as the possibility of development of landslides, detailed analysis of where landslides are most likely to be developed were analysed by using two concepts of safety and index of failure probability.

  • PDF

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.