• Title/Summary/Keyword: 무인 회전익기

Search Result 16, Processing Time 0.024 seconds

Analysis and Trend Curve Derivation of Major Design Parameters of Unmanned and Manned Rotorcrafts (유.무인 회전익기 주요 설계변수의 추세선 식 유도 및 비교 분석 연구)

  • Hwang, Chang-Jeon;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.26-35
    • /
    • 2006
  • Design parameters of manned and unmanned rotorcrafts have been investigated to construct a design database and to derive trend curves. Design parameters of 78 manned rotorcrafts and 33 unmanned rotorcrafts have been collected and analyzed using linear regression method. Six kinds of trend curves equations are derived. Most of trend curves derived are relatively meaningful according to the calculated correlation and determination coefficients. The comparisons between manned and unmanned rotorcraft characteristics are performed. It has been drawn according to the comparisons that unmanned rotorcraft has smaller main rotor diameter and maximum take-off weight, bigger tail rotor size and similar level of empty weight fraction than manned rotorcraft.

Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft (유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증)

  • Hyoung Jin Kim;Sang Eun Kwon;Young Wo Jo;Bong Gyu Kim;Eun Kyoung Go
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2023
  • This paper describes the system integration laboratory's requirement analysis, implementation, and verification for multiple-scenario unmanned aerial vehicle operation and control technology using a manned rotorcraft for Manned-Unmanned Teaming. System integration laboratory consists of manned rotorcraft flight simulation, unmanned aerial vehicle flight and mission equipment simulation, ground control system simulation for unmanned aerial vehicle control and change in the control authority between the ground control system and manned rotorcraft, and operation and control system for mission plan's writing and transmission. Each implemented simulation verified the requirements through software and hardware integration test.

A Study about an Autonomic Flight of Unmanned Aerial Vehicle(UAV) Using the GPS (GPS를 활용한 무인 비행체의 자율비행에 관한 연구)

  • Oh, Sung-Nam;Lee, Gum-Soo;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.357-358
    • /
    • 2008
  • 본 논문은 GPS를 이용한 무인 비행체의 자율비행에 관한 연구를 다루었다. 비행체의 종류는 크게 고정익기와 회전익기로 나뉘는데 본 연구에서는 회전익기의 형태를 가진 Quarter Vehicle을 사용하였다. Quarter Vehicle은 4개의 프로펠러에 의한 양력과 회전 반발력으로 비행을 한다. 이때의 양력은 수평면에 대해 수직으로 추력을 발생시키므로 다른 비행체보다 불안정하며 이를 안정하게 제어하기 위해 관성 센서를 적용하여 균형을 유지한다. 본 연구에서는 UAV의 자세와 균형을 안정적으로 유지하기 위해 관성센서를 적용하였으며 GPS를 활용하여 독립적인 자율비행이 가능하도록 하였다. 정확한 위치정보를 제공하는 GPS는 3개 이상의 위성으로부터 시간 및 위치 정보를 받아 좌표를 계산하고 비행체의 위치, 속도 및 방향을 결정하여 자율 비행이 가능하도록 한다. 또한 초형 지자기센서를 비행체에 적용하여 GPS의 방향 정보를 보완하도록 하였다. 본 논문에서는 무인 비행체의 자율비행의 기초가 되는 위치좌표 계산을 위한 GPS의 적용 방법과 비행경로계획 알고리즘을 제시 한다.

  • PDF

Patents Survey and Analysis on a Conceptual Study of Rotor Drive Systems of Combined Unmanned Rotorcraft (복합형 무인 회전익기 로터드라이브시스템 개념 연구를 위한 특허 조사 및 분석)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 2016
  • This paper presents a survey of patents and an analysis of a conceptual study for the development of rotor drive systems in combined unmanned rotorcraft in. The patents were classified into 10 cases with respect to the rotor drive system development, and these are reviewed and analyzed in detail. The results describe development concepts for rotor drive systems for vehicles obtained through the patent analysis.

A Study about Attitude Control of Unmanned Aerial Vehicle(UAV) Using the Inertial Sensor (관성센서를 이용한 무인 항공체의 자세 제어에 관한 연구)

  • Oh, Sung-Ham;Yun, Dong-Woo;Lee, Gum-Soo;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.244-245
    • /
    • 2008
  • 본 논문은 관성센서를 이용한 무인 항공체의 자세 제어에 관한 연구를 다루었다. 항공계의 종류는 크게 고정익기와 회선익기로 나뉘는데 본 연구에서는 회전익기의 형태를 가진 Quarter Vehicle을 사통하였다. Quarter Vehicle은 4개의 프로펠러에 의한 양력과 회전 반발력으로 비행을 한다. 이때의 양력은 수평면에 대해 수직으로 추력을 발생시키므로 다른 비행체보다 불안정하며 이를 안정하게 제어하기 위해 관성 센서를 적용하여 균형을 유지한다. 본 연구에서는 관성센서를 이용하여 UAV의 자세와 균형을 안정적으로 유지하여 안정적인 비행이 가능하도록 하였다. 또한 상호 의존적인 항법 시스템으로 환경변화에 영향을 받지 않으며, 정확한 위치정보를 제공하는 GPS를 사용하여 3개 이상의 위성으로부터 정보를 받아 좌표를 계산하고 위치, 속도 및 방향을 결정하여 자율 비행이 가능하도록 설계하였다. 본 논문에서는 Quarter Vehicle의 구조와 이론적 배경을 통한 설계, 그리고 관성센서와 GPS의 적용을 위한 방법을 제시 한다.

  • PDF

Performance and Airloads Analyses for a Rigid Coaxial Rotor of High-Speed Compound Unmanned Rotorcrafts (고속 비행 복합형 무인 회전익기의 강체 동축반전 로터의 성능 및 공력 하중 해석)

  • Kwon, Young-Min;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • This study investigates the performance and blade airloads for a rigid coaxial rotor of high-speed compound unmanned rotorcrafts. The present compound unmanned rotorcraft uses not only a rigid coaxial rotor, but also wings and propellers for high-speed flights. For the rigid coaxial rotor in this work, CAMRAD II, a rotorcraft comprehensive analysis code, is used to study the performance at a flight speed of up to 250 knots and blade section lift forces at 230 knots. As the flight speed increases, the rotor power decreases; however, the power of propellers increases to overcome the drag force of a rotorcraft in high-speed flight. The effective lift-to-drag ratio of a rotor has the maximum value of about 11.6 which is much higher than the value of the conventional helicopter. The blade section lift forces of the upper and lower rotors at 230 knots show the similar variation trends for one rotor revolution, and the impulses because of the aerodynamic interaction between both rotors are observed.

PC 기반 회전익기/전장품 HILS 환경 개발

  • Choi, Hyoung-Sik;Park, Mu-Hyuk;Nam, Gi-Wook;Ahn, Iee-Ki
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.238-247
    • /
    • 2004
  • Realtime Simulation and HILS are essential tools for modern aircraft control system design and development. But developing the HILS has been a big and complex task to meet the realtime simulation requirement. So these days there have been efforts to minimize these task. New advanced concept and design tools are being developed. In this paper, these new advanced concept and design tools were used to develop the realtime simulation and HILS environment for rotorcraft. The H/W 문 S/W requirement and system configuration for the developing system will be described on the paper.

  • PDF

Uniformity Analysis of Unmanned Aerial Application with Variable Rate Spray System (무인항공 변량방제 시스템의 살포 균일도 분석)

  • Koo, Young Mo;Bae, Yeonghwan
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.111-125
    • /
    • 2018
  • In this study, we evaluated the uniformity of deposition rate and particle size distributions of the variable rate application technique using the unmanned rotorcraft by measuring the spray pattern according to path location in the range of spraying flight. The coefficient of variation (CV) of the lateral coverage rate for the overlapped distribution with the spray swath of 3.6 m in both guidance and auto-pilot flight modes maintaining constant flight speed was about 30% and the CV of the coverage rate by the flight path location was extremely small. Therefore, it was assessed that the variable rate application technology compensating for the variation of ground speed was superior in terms of spray uniformity. In addition, the droplet size distributions in both volume median diameter(VMD) and number median diameter(NMD) were adequate for aerial application and uniform in terms of lateral distribution. Thereafter, we intend to contribute to a precise application on small-scaled fields using the unmanned agricultural rotorcraft by the variable rate application.

Study on Dynamic Characteristics and Performance of Tip Jet Rotor Using Small-scaled Rotor (축소로터를 이용한 Tip Jet 로터의 성능 및 동특성 연구)

  • Kwon, Jae Ryong;Baek, Sang Min;Rhee, Wook;Lee, Jae Ha
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • In this study, a small-scaled test system for a tip jet rotor was developed to contribute to the research on unmanned compound rotorcraft. The performance and dynamic characteristics of the tip jet rotor were investigated using the test system. The diameter of the tip jet rotor was set to 2m in consideration of the size of the test site and the pneumatic supply capacity of the. The rotating speed of the rotor was controlled by the pressure of the compressed air. The thrust and forces during the rotor rotation were measured using a load measuring device. A hydraulic actuator was installed for the dynamic test and full-bridge strain gages were attached to the root of each blade to measure the flap, lag, and torsion-wise responses generated when the rotor is excited by the actuator. The performance and dynamic characteristic tests were conducted at various rotor speeds and blade pitches. In order to check the validity of the test results, the results were also compared with the CAMRAD II analysis.

Implementation and Flight Test Performance Analysis of vSLAM Aided Integrated Navigation System for Rotary UAV (vSLAM 보조 통합항법시스템 구현 및 무인 회전익기를 이용한 비행시험 성능분석)

  • Yun, Suk-Chang;Lee, Byoung-Jin;Yun, Suk-Hwan;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, vSLAM aided integrated navigation system is implemented and performance analysis of the system is completed via flight test. The system can suppress divergence of position error of INS only system by updating vSLAM correction information when temporary GPS signal outage occurs in bad radio condition. In the flight test, integrated hardware containing GPS, IMU and camera is loaded under RC electric helicopter. Performance of the integrated navigation system is verified by comparing estimated position of INS/vSLAM system with that of INS only system.