In a coastal area, a plenty of research has adopted remotely sensed data. This is because longterm interaction between land and ocean makes continuous geographical changes in a broad extent and unaccessible areas. However, conventional remote sensing platforms such as satellite or airplane has several disadvantages including limited temporal resolution and high operational costs. Hence, this study uses a UAV system to detect a coastline and its movement. Result of coastline detection shows how the coastline moves in a day. Time-series coastlines were derived from UAV aerial images through digital image processing. There is a drawback in the stability of UAV compared to the conventional remote sensing platform, but the advantage appears on the economical efficiency. Since the latest studies shows an improvement of UAV for a variety of purposes in many fields, a UAV can also be utilized for regional study and spatial data acquisition platform. geography can also utilize a UAV as a spatial data acquisition platform for regional study.
In Analysis of Fragmentation of rock blasted, The photo analysis method has been mainly used and these image acquisitions are mainly obtained by digital image from the front of the crushed rock. However, Image analysis is basically advantage of the image of planar shooting not front shooting but There is no way to take a photograph of huge plane rock slope. Thus, Unavoidably It is resolved by distorting or extending the image filmed at the front as well as adjusting it similar to its angle of plane shooting. Lately, With advancing unmanned aerial vehicle, It can simply image the fragment conditions of blasted rock of a high-definition digital image and Through it, It can acquire the most planar image to angle which accumulate cataclastic rock and also can make image analysis. In this study, It has been confirmed that tolerance value of analysis result of image filmed flatly is markedly lower than the existing front filmed image.
Recently, the unmanned aerial vehicle Drone technology is attracting new interest around the world. The versatilities in science, military, marketing, sports, and entertainment fields are the driving force of the drone fever. Thus, the potential power of future industrial is expected as the application range is extensive. In this paper, we design and propose the prototype of unmanned aerial vehicle-based bigdata processing system.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.6
/
pp.372-378
/
2016
The purpose of this study is to develop a system configuration for gathering data and building a database for agriculture. Some foreign agriculture-related companies have already constructed such a database for scientific agriculture. The hardware of this system is composed of automatic capturing equipment based on aerial photography using a UAV. The software is composed of parts for stitching images, matching GPS data with captured images, and building a database of collected weather information, farm operation data, and aerial images. We suggest a method for building the database, which can include information about the amount of agricultural products, weather, farm operation, and agricultural land images. The images of this system are about 5 times better than satellite images. Factors such as farm working and environmental factors can be basic data for analyzing the full impact of agriculture land. This system is expected to contribute to the scientific analysis of Korea's agriculture.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.275-275
/
2019
기후변화에 따른 집중호우의 발생빈도와 강도가 증가하면서 대규모 홍수로 인한 인명 및 재산피해가 발생하고 있다. 그에 따라 홍수 상황을 신속하게 확보하고 홍수피해를 빠르게 예측하는 모니터링 기술이 필요하다. 최근 공간정보 분야에서 무인항공기 (UAV: Unmanned aerial vehicles)를 이용한 3차원 지형자료 확보 연구가 활발하게 이용되고 있다. 무인항공기는 지형자료 구축 뿐 만 아니라 홍수 시 신속한 홍수 모니터링이 가능하기 때문에, 본 연구에서는 무인항공기를 이용하여 홍수 전 지형자료 구축을 비롯하여, 홍수 시 모니터링, 홍수 후 지형자료 구축에 이르기까지 UAV를 이용한 홍수 모니터링 기술을 소개한다. 연구대상지는 금강 합류 직전 논산천 하류 1 km 지점으로, UAV를 이용한 지형자료를 구축하기 이전에 좌표 매칭을 위한 GCP (Ground Control Point ) 측량을 실시하고, UAV 비행계획을 수립하고 촬영한다. 촬영된 영상을 GCP좌표와 소프트웨어 (Pix4D)를 이용하여 정사영상과 DSM(Digital Surface Model)자료를 구축한다. 홍수시 UAV를 이용한 촬영을 통하여 동영상은 수재해 플랫폼에 송신하고, 이미지 영상은 홍수 전 영상처리와 동일한 방법을 이용하여 지형 자료를 구축하여, 홍수시 침수심이나 지형변화를 분석한다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.41
no.3
/
pp.317-325
/
2021
Pine wilt disease first appeared in Busan in 1998; it is a serious disease that causes enormous damage to pine trees. The Korean government enacted a special law on the control of pine wilt disease in 2005, which controls and prohibits the movement of pine trees in affected areas. However, existing forecasting and control methods have physical and economic challenges in reducing pine wilt disease that occurs simultaneously and radically in mountainous terrain. In this study, the authors present the use of a deep learning object recognition and prediction method based on visual materials using an unmanned aerial vehicle (UAV) to effectively detect trees suspected of being infected with pine wilt disease. In order to observe pine wilt disease, an orthomosaic was produced using image data acquired through aerial shots. As a result, 198 damaged trees were identified, while 84 damaged trees were identified in field surveys that excluded areas with inaccessible steep slopes and cliffs. Analysis using image segmentation (SegNet) and image detection (YOLOv2) obtained a performance value of 0.57 and 0.77, respectively.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.42
no.7
/
pp.576-585
/
2014
In this paper, we survey the Moving Target Indication(MTI) techniques for small UAVs. MTI consists of image alignment phase and frame differencing correction phase, and image alignment has two ways of parametric approach which is mainly focused in this paper and non-parametric approach. Since small UAVs are operated in the low altitude, the parallax is considerable and the epipolar geometry is applied to compensate the parallax. The related works and future works are presented.
Crop monitoring can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. But, traditional monitoring has used field measurements involving destructive sampling and laboratory analysis, which is costly and time consuming. Unmanned Aerial vehicle (UAV) could be effectively applied in a field of crop monitoring for estimation of cultivated area, growth parameters, growth disorder and yield, because it can acquire high-resolution images quickly and repeatedly. And lower flight altitude compared with satellite, UAV can obtain high quality images even in cloudy weather. This study examined the possibility of utilizing UAV in the field of crop monitoring and was to suggest the application method for production of crop status information from UAV.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.6
/
pp.1209-1216
/
2020
In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.
KSCE Journal of Civil and Environmental Engineering Research
/
v.43
no.4
/
pp.511-523
/
2023
Research on the integration of unmanned aerial vehicles and deep learning for reinforced concrete damage detection is actively underway. Convolutional neural networks have a high impact on the performance of image classification, detection, and segmentation as backbones. The MobileNet, a pre-trained convolutional neural network, is efficient as a backbone for an unmanned aerial vehicle-based damage detection model because it can achieve sufficient accuracy with low computational complexity. Analyzing vanilla convolutional neural networks and MobileNet under various conditions, MobileNet was evaluated to have a verification accuracy 6.0~9.0% higher than vanilla convolutional neural networks with 15.9~22.9% lower computational complexity. MobileNetV2, MobileNetV3Large and MobileNetV3Small showed almost identical maximum verification accuracy, and the optimal conditions for MobileNet's reinforced concrete damage image feature extraction were analyzed to be the optimizer RMSprop, no dropout, and average pooling. The maximum validation accuracy of 75.49% for 7 types of damage detection based on MobilenetV2 derived in this study can be improved by image accumulation and continuous learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.