• Title/Summary/Keyword: 무인항공기 결함

Search Result 270, Processing Time 0.022 seconds

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV (소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.413-422
    • /
    • 2012
  • The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

제3회 한국 로봇항공기 경연대회 결과

  • 한국항공우주산업진흥협회
    • Aerospace Industry
    • /
    • v.85
    • /
    • pp.20-25
    • /
    • 2004
  • 무인기 기술개발 및 저변 확대를 위한 ''''제3회 한국 로봇항공기 경연대회''''가 산업자원부 주최로 9월 19일 한국항공대학교에서 개최되었다. 그동안 임무수행 미달로 대상 수상자를 배출하지 못하고 있었는데, 이번 대회에서는 대상 심사기준에 요구되는 임무를 완벽하게 수행해 내는 팀이 속출, 치열한 경합을 벌이며 기술적 진전도 두드러졌다.

  • PDF

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

Use of Unmanned Aerial Vehicle for Forecasting Pine Wood Nematode in Boundary Area: A Case Study of Sejong Metropolitan Autonomous City (무인항공기를 이용한 소나무재선충병 선단지 예찰 기법: 세종특별자치시를 중심으로)

  • Kim, Myeong-Jun;Bang, Hong-Seok;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.100-109
    • /
    • 2017
  • This study was conducted for preliminary survey and management support for Pine Wood Nematode (PWN) suppression. We took areal photographs of 6 areas for a total of 2,284 ha during 2 weeks period from 15/02/2016, and produced 6 ortho-images with a high resolution of 12 cm GSD (Ground Sample Distance). Initially we classified 423 trees suspected for PWN infection based on the ortho-images. However, low accuracy was observed due to the problems of seasonal characteristics of aerial photographing and variation of forest stands. Therefore, we narrowed down 231 trees out of the 423 trees based on the initial classification, snap photos, and flight information; produced thematic maps; conducted field survey using GNSS; and detected 23 trees for PWN infection that was confirmed by ground sampling and laboratory analysis. The infected trees consisted of 14 broad-leaf trees, 5 pine trees (2 Pinus rigida), and 4 other conifers, showing PWN infection occurred regardless of tree species. It took 6 days for 2.3 men from to start taking areal photos using UAV (Unmanned Aerial Vehicle) to finish detecting PNW (Pine Wood Nematode) infected tress for over 2,200 ha, indicating relatively high efficacy.

UAV Path Planning for ISR Mission and Survivability (무인항공기의 생존성을 고려한 감시정찰 임무 경로 계획)

  • Bae, Min-Ji
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.211-217
    • /
    • 2019
  • In an complicated battlefield environment, information from enemy's camp is an important factor in carrying out military operations. For obtaining this information, the number of UAVs that can be deployed to the mission without our forces' loss and at low cost is increasing. Because the mission environment has anti-aircraft weapons, mission space is needed for UAV to guarantee survivability without being killed. The concept of Configuration Space is used to define the mission space considering with range of weapons and detect range of UAV. UAV must visit whole given area to obtain the information and perform Coverage Path Planning for this. Based on threats to UAV and importance of information that will be obtained, area that UAV should visit first is defined. Grid Map is generated and mapping threat information to each grid for UAV path planning. On this study, coverage conditions and path planning procedures are presented based on the threat information on Grid Map, and mission space is expanded to improve detection efficiency. Finally, simulations are performed, and results are presented using the suggested UAV path planning method in this study.

Fixed-Wing UAV's Image-Based Target Detection and Tracking using Embedded Processor (임베디드 프로세서를 이용한 고정익 무인항공기 영상기반 목표물 탐지 및 추적)

  • Kim, Jeong-Ho;Jeong, Jae-Won;Han, Dong-In;Heo, Jin-Woo;Cho, Kyeom-Rae;Lee, Dae-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • In this paper, we described development of on-board image processing system and its process and verified its performance through flight experiment. The image processing board has single ARM(Advanced Risk Machine) processor. We performed Embedded Linux Porting. Algorithm to be applied for object tracking is color-based image processing algorithm, it can be designed to track the object that has specific color on ground in real-time. To verify performance of the on-board image processing system, we performed flight test using the PNUAV, UAV developed by LAB. Also, we performed optimization of the image processing algorithm and kernel to improve real-time performance. Finally we confirmed that proposed system can track the blue-color object within four pixels error range consistently in the experiment.

System of Agricultural Land Monitoring Using UAV (무인항공기를 이용한 농경지 모니터링 시스템)

  • Kang, Byung-Jun;Cho, Hyun-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.372-378
    • /
    • 2016
  • The purpose of this study is to develop a system configuration for gathering data and building a database for agriculture. Some foreign agriculture-related companies have already constructed such a database for scientific agriculture. The hardware of this system is composed of automatic capturing equipment based on aerial photography using a UAV. The software is composed of parts for stitching images, matching GPS data with captured images, and building a database of collected weather information, farm operation data, and aerial images. We suggest a method for building the database, which can include information about the amount of agricultural products, weather, farm operation, and agricultural land images. The images of this system are about 5 times better than satellite images. Factors such as farm working and environmental factors can be basic data for analyzing the full impact of agriculture land. This system is expected to contribute to the scientific analysis of Korea's agriculture.

Detection Method of River Floating Debris Using Unmanned Aerial Vehicle and Multispectral Sensors (무인항공기 및 다중분광센서를 이용한 하천부유쓰레기 탐지 기법 연구)

  • Kim, Heung-Min;Yoon, HongJoo;Jang, SeonWoong;Chung, YongHyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.537-546
    • /
    • 2017
  • This study aims to develop the floating debris detection algorithm using a Unmanned Aerial Vehicle (UAV) and multispectral sensors. In addition, the occurrence range of floating debris was estimated by applying the algorithm. An aerial photograph using an unmanned aerial vehicle was used to generate an orthoimage that can calculate the area. A spectrum survey of water, plants litter, polystyrene foam etc. was conducted. After obtaining spectroscopic characteristics of floating debris and water, the River Floating Debris (RFD) index was calculated. And we detected the floating debris through band combination of sensor using RFD. As a result of the RFD application, accumulation zone of floating debris was confirmed at three sites in the orthoimage. It was estimated that a lot of floating debris was accumulated at 0.82 ha ($8,200m^2$), which is corresponding to 3.6% including the accumulation zone.

A Study on the Characteristics and Military Applications of Different Types of Unmanned Aerial Vehicles for Military Use (군사용 무인항공기의 유형별 특징과 군사적 활용 방안 연구)

  • Young-Kil Kim;Kyoung-Haing Lee;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.425-430
    • /
    • 2024
  • This paper analyzes the characteristics of various types of unmanned aerial vehicles (drones) for military use and how each type can be utilized in military operations. The scope of the study focuses on the structural features, advantages and disadvantages, and military application cases of fixed-wing, rotary-wing, hybrid, and swarm drones. It also discusses the development direction of drone technology, changes in military strategy, opportunities, and challenges. The results show that each type of drone plays a crucial role in various military operations such as reconnaissance, surveillance, strike, logistics, search, and rescue. With advancements in artificial intelligence, autonomous flight, and swarm technologies, the range of drone applications is expected to expand further. However, ensuring the safety and ethics of drone operations and establishing international norms have emerged as major challenges.

Fatigue Analysis based on Kriging for Flaperon Joint of Tilt Rotor Type Aircraft (틸트 로터형 항공기의 플랩퍼론 연결부에 대한 크리깅 기반 피로해석)

  • Park, Young-Chul;Jang, Byoung-Uk;Im, Jong-Bin;Lee, Jung-Jin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.541-549
    • /
    • 2008
  • The fatigue analysis is performed to avoid structural failure in aerospace structures under repeated loads. In this paper, the fatigue life is estimated for the design of tilt rotor UAV. First of all, the fatigue load spectrum for tilt rotor UAV is generated. Fatigue analysis is done for the flaperon joint which may have FCL(fracture critical location). Tilt rotor UAV operates at two modes: helicopter mode such as taking off and landing; fixed wing mode like cruising. To make overall fatigue load spectrum, FELIX is used for helicopter mode and TWIST is used for fixed wing mode. The other hand, the Kriging meta model is used to get S-N regression curve for whole range of material life when S-N test data are analyzed. And then, the second order of S-N curve is accomplished by the least square method. In addition, the coefficient of determination method is used to ensure how accuracy it has. Finally, the fatigue life of flaperon joint is compared with that obtained by MSC. Fatigue.