• Title/Summary/Keyword: 무선자원할당제어

Search Result 67, Processing Time 0.025 seconds

Uplink Power Control and Sub-channel Allocation depending on the location of Mobile Station in OFDMA system (OFDMA 시스템에서 단말기의 위치정보를 이용한 상향링크 전력제어 및 부채널 할당)

  • Kim, Dae-Ho;Kim, Whan-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • In OFDMA system, even if the number of allocated sub-channel in mobile station varies from one to the whole sub-channel as in base station, while because of mobile station's transmit power is lower than that of base station, therefore full loading range(FLR) constraint occurs where whole sub-channel can be used and the conventional open-loop power control scheme can not be used beyond FLR. We propose a new scheme that limits the maximum sub-channel allocation number and uses power concentration gain(PCG) depending on location of mobile station, which is based on ranging in OFDMA system. Simulation results show that the proposed scheme provides solutions for optimum utilization of radio resource depending on the location of mobile station and enables open-loop power control beyond FLR without extra hardware complexity.

Resource Allocation Method in High-Rate Wireless Personal Area Networks (고속 무선 PAN에서의 자원 할당 방식)

  • Kim, Byung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • High-Rate Wireless Personal Area Networks (HR-WPANs) in IEEE 802.15.3 standard use a TIme Devision Multiple Access (TDMA) protocol to support isochronous traffic. Isochronous traffic requires a delay-bounded service. However, the HR-WPAN standard suffers from long access delay and association delay. In this paper, we propose an enhanced MAC protocol for the delay-bounded traffic. This proposed protocol provides a way that a central node is able to collect traffic status on all member nodes. Furthermore, by utilizing the information, a scheduling algorithm is also proposed in order to synchronize the instant of a packet transmission with that of the packet arrival. With the proposed protocol and algorithm, the delay of access and association can be reduced. Performance analysis is carried out and the significant performance enhancement is observed.

  • PDF

Power Control and DFS Based on Genetic Algorithm in Cognitive Radio System (Cognitive Radio 시스템에서 유전자 알고리즘 기반 전력 제어 및 동적 주파수 선택방법)

  • Lee, Joo-Kwan;Shan, Sung-Hwan;Hong, In;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.100-111
    • /
    • 2009
  • Cognitive radio is an advanced technology for efficient utilization of under-utilized spectrum via spectrum sensing. CR users should move from current allocating channel to empty channel to avoid the interference to the primary user if the primary user is allocating that channel. Thus, CR system cannot support the CR user's QoS(Quaiity of Service). In this paper, we propose dynamic frequency selection method based on Genetic Algorithm with power control. It is to find the optimization channel for satisfying various CR user's needs with the power control method to minimize the CR user's interference to the primary user. And, we propose the Genetic Algorithm(GA) which determines the best configuration for CR communication systems. The computer simulation results show that the proposed method guaranteed the primary user's decodability and the optimized solution for various channel status.

  • PDF

Zone-based Power Control Mechanism of CDMA Forward Link for High-speed Wireless Data Services (고속 무선 데이터 서비스를 위한 CDMA 순방향 링크에서의 Zone-based 전력제어 방식)

  • 윤승윤;임재성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.673-685
    • /
    • 2002
  • In this paper, we analyze the pros and cons of the fast power control to the forward link in the environments where mixed traffics of voice and data produce the transmitted/received power difference. We propose the Zone-based power control scheme that can improve the performance of the fast power control scheme in the viewpoint of the resource allocation. The proposed scheme is a mechanism that controls both the power and rate of non-realtime data traffics according to location distribution of the mobile stations. The scheme is based on the conventional fast power control scheme in the CDMA systems, and it adaptively controls the transmission rate of each data traffic. Zone-based rate control of data call brings about somewhat power margin to the call. As a result, the proposed scheme saves the power consumption of portables and reduces the amount of interference. With the proposed scheme, not only be extended the service coverage of high-rate traffic to the entire cell service coverage, but also the QoS of low-rate traffic can keep going through the service time, especially, in the situation that the amount of incoming interference is much larger. The experimental results show that the proposed scheme yields a improved performance compared with the conventional scheme in terms of the power consumption and traffic throughput of portables, especially, with the increasing number of high-rate data traffics.

An Adaptive Load Control Scheme in Hierarchical Mobile IPv6 Networks (계층적 모바일 IP 망에서의 적응형 부하 제어 기법)

  • Pack Sang heon;Kwon Tae kyoung;Choi Yang hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1131-1138
    • /
    • 2004
  • In Hierarchical Mobile Ipv6 (HMIPv6) networks, the mobility anchor point (MAP) handles binding update (BU) procedures locally to reduce signaling overhead for mobility. However, as the number of mobile nodes (MNs) handled by the MAP increases, the MAP suffers from the overhead not only to handle signaling traffic but also to Process data tunneling traffic. Therefore, it is important to control the number of MNs serviced by the MAP, in order to mitigate the burden of the MAP. We propose an adaptive load control scheme, which consists of two sub-algorithms: threshold-based admission control algorithm and session-to-mobility ratio (SMR) based replacement algorithm. When the number of MNs at a MAP reaches to the full capacity, the MAP replaces an existing MN at the MAP, whose SMR is high, with an MN that just requests binding update. The replaced MN is redirected to its home agent. We analyze the proposed load control scheme using the .Markov chain model in terms of the new MN and the ongoing MN blocking probabilities. Numerical results indicate that the above probabilities are lowered significantly compared to the threshold-based admission control alone.

A Dynamic Queue Manager for Optimizing the Resource and Performance of Mass-call based IN Services in Joint Wired and Wireless Networks (유무선 통합 망에서 대량호 지능망 서비스의 성능 및 자원 최적화를 위한 동적 큐 관리자)

  • 최한옥;안순신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.942-955
    • /
    • 2000
  • This paper proposes enhanced designs of global service logic and information flow for the mass-call based IN service, which increase call completion rates and optimize the resource in joint wired and wireless networks. In order to hanve this logic implemented, we design a Dynamic Queue Manager(DQM) applied to the call queuing service feature in the Service Control Point(SCP). In order to apply this logic to wireless service subscribers as well as wired service subscribers, the service registration flags between the Home Location Register(HLR) and the SCP are managed to notify the DQM of the corresponding service subscribers’ mobility. Hence, we present a dynamic queue management mechanism, which dynamically manages the service group and the queue size based on M/M/c/K queueing model as the wireless subscribers roam the service groups due to their mobility characteristics. In order to determine the queue size allocated by the DQM, we simulator and analyze the relationship between the number of the subscriber’s terminals and the drop rate by considering the service increment rate. The appropriate waiting time in the queue as required is simulated according to the above relationship. Moreover, we design and implement the DQM that includes internal service logic interacting with SIBs(Service Independent building Blocks) and its data structure.

  • PDF

Media Access Control Protocol based on Dynamic Time Slot Assignment in Underwater Mobile Ad-hoc Network (동적 타임 슬롯 할당에 기반한 수중 모바일 Ad-hoc 네트워크에서의 매체접근제어 프로토콜)

  • Shin, Seung-Won;Kim, Yung-Pyo;Yun, Nam-Yeol;Park, Soo-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.81-89
    • /
    • 2011
  • Underwater wireless network can be useful in various fields such as underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, and vessel sinking exploration. We need to develop an efficient design for Medium Access Control (MAC) protocol to improve multiple data communication in underwater environment. Aloha protocol is one of the basic and simple protocols, but it has disadvantage such as collision occurs oftenly in communication. If there is collision occured in RF communication, problem can be solved by re-sending the data, but using low frequency in underwater, the re-transmission has difficulties due to slow bit-rate. So, Time Division Multiple Access (TDMA) based MAC protocol is going to be used to avoid collisions, but if there is no data to send in existing TDMA, time slot should not be used. Therefore, this paper proposes dynamic TDMA protocol mechanism with reducing the time slots by sending short "I Have No Data" (IHND) message, if there is no data to transmit. Also, this paper presents mathematic analysis model in relation to data throughput, channel efficiency and verifies performance superiority by comparing the existing TDMA protocols.