• Title/Summary/Keyword: 무배근

Search Result 3, Processing Time 0.018 seconds

Flexural Performance and Cracking Resistance of Continuous Composite Slab using Micro Steel Fibers (마이크로 강섬유 콘크리트를 적용한 연속 합성슬래브의 휨 및 균열 저항성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Gap-Deug;Choi, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • In the present study, to enhance the constructability, a composite slab system using deck plate and micro steel fiber concrete was studied. In the proposed slab system, on-situ re-bar placement is not required. Steel fibers replace the temperature reinforcement. The present study focused on the crack control at the slab top in the continuous composite slab without spliced bars. Eight continuous slabs with various parameters were tested under vertical loading. The test parameters were the amount and types of micro steel fibers, types of deck plate, and the use of top bars in the continuous slab. To evaluate the crack resistance of the slabs, crack widths were measured in the continuous slabs. The test results showed that although the top spliced bars were not used, cracking were restrained by large flexural stiffness of the composite sections.

Strength Evaluation of High-Strength Concrete Specimens within Reinforcing Bars (철근이 포함된 고강도 콘크리트 공시체의 강도평가)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2018
  • Recently, the safety issue of high-rise concrete buildings damaged by fire, helicopter collisions, earthquakes, and faulty construction has attracted a great deal of interest. It is essential to know the strength of the concrete in order to accurately evaluate its safety for the reinforcement of these buildings. The core drilling method is considered to be the most effective method of assessing the compressive strength of concrete. However, it is very difficult to retrieve the core without the reinforcing bars, because buildings made with high-strength concrete are overcrowded with reinforcing bars. These reinforcing bars are often present in the core specimens, but there are few research studies and no regulations concerning the assessment of the strength of the concrete for high-strength core specimens within reinforcing bars. The purpose of this study is to investigate the effects of the reinforcement arrangement on the strength of the concrete and to present the quantitative values. To complete this research, the compressive strengths of different types of concrete with two different strengths (40 MPa and 60 MPa), two reinforcing bar diameters (10 mm and 12 mm), and 15 types of specimens with or without reinforcement arrangements were prepared and tested. As a result, the strength of the cylinders whose volume is less than or equal to the reinforcement volume of $53.1cm^3$ (about 4 - 13 mm) was predicted to have a low value of up to 60% of the strength of the cylinders without reinforcement.

Effect of the Embedded Reinforcing Bar of Specimens on the Compressive Strength of Concrete (공시체에 포함된 철근이 콘크리트 압축강도에 미치는 영향)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.552-558
    • /
    • 2016
  • Recently, the repair and reinforcement of deteriorated concrete buildings has attracted much interest. In order to accurately evaluate the safety of these existing structures, it is essential to know the strength of the concrete that they are composed of. The core drilling method is considered to be the most effective and common method of assessing the compressive strength of concrete. In general, the regulations do not permit the core specimens within reinforcing bars to be used to assess the strength of the concrete, even if the core specimens contain reinforcing bars in some cases. The purpose of this study is to investigate the effects of the reinforcement arrangement on the compressive strength of concrete, and to propose the quantitative specific standard of strength for core specimens containing reinforcements, in order to facilitate their safe inspection by repair or retrofit companies who want to evaluate the soundness of the structures. To complete this research, one type of cylinder specimen without reinforcement and 14 types of specimens with reinforcement arrangements were prepared and their compressive strength evaluated. It was found that the strength of the cylinders with reinforcement volumes of up to $50cm^3$ (about 4-ϕ13mm) was more than 80% of that of the cylinders without any reinforcement.