• 제목/요약/키워드: 무량판 슬래브

Search Result 32, Processing Time 0.028 seconds

Analysis of Effects of Reshoring Works on Short and Long Term Deflections of Flat Plates (플랫 플레이트 구조의 장단기 처짐 제어에 대한 동바리 재설치 작업의 효과 분석)

  • Kim, Jae-Yo;Park, Soo-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • RC flat plates may be governed by a serviceability as well as a strength condition, and a construction sequence and its impact on the distributions of gravity loads among slabs tied by shores are decisive factors influencing short and long term behaviors of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, and a reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of loads in a multi-shored flat plate system. In this study, a effect of reshoring works on short and long term deflections of flat plate systems are analyzed. The slab construction loads with various reshoring schemes and slab design and construction conditions are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking and long term effects is applied. From parametric studies, the reshoring works are verified to reduce slab deflections, and the optimized conditions for the reshoring works and slab design and constructions are discussed.

An Experimental Study on the Fire Behavior of Concrete Void Slab under Standard Fire with Loading Condition (표준화재 재하조건 콘크리트 중공슬래브의 피복두께에 따른 화재거동에 관한 실험적 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Cho, Beom-Yeon;Yeo, In-Hwan;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.64-72
    • /
    • 2011
  • The concrete void slab structure with the existing mushroom slab, is the structure that maximizes the advantages, while minimizing the weakness with removing useless body force of the concrete part, located on the center of the slab cross-section, which does not need to support the structural weight. In this research, a fire test is performed to analyze how the blaze behave according to the thickness of slab cover, with the practical span length of concrete void slab for the slab length 7.5 m. With this heating test, we assumed the uniform-load-model considering fixed loads and live loads, and chose the standard fire test condition. We measured the temperature changes and the deflection character according to the depth from the heat exposure side, and assessed the resisting capability according to the standard KS F 2257-1. The result comes out with the EPS model can secure about 2 hour fire-resisting-capability with 50 mm of cover depth.

Generalized Analysis of RC and PT Flat Plates Using Limit State Model (한계상태모델을 이용한 철근콘크리트와 포스트텐션 무량판의 통합해석)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.599-609
    • /
    • 2009
  • This paper discusses generalized modeling schemes for both reinforced concrete (RC) and post-tensioned (PT) flat plate buildings. In this modeling approach, nonlinear behavior due to slab flexure, moment and shear transfer at slab-column connections, and punching shear was included along with linear secant stiffness of each member or connection that accounts for concrete cracking. This generalized model was capable of simulating all different scenarios of slab-column connection failures such as brittle punching, flexure-shear interactive failure, and flexural failure followed by drift-induced punching. Furthermore, automatic detection of drift-induced punching shear and subsequent backbone curve modifications were realistically modelled by incorporating the limit state model, in which gravity shear versus drift capacity relations were adopted. The validation of the model was conducted using one-third scale two-story by two-bay RC and PT flat plate frames. The comparisons revealed that the model was robust and effective.

An Experimental Study of SL Shear Reinforcement for Reinforced Concrete Flat Plate Slab (철근콘크리트 무량판 슬래브의 일체형 SL(Shear Ladder) 전단보강재에 관한 실험적 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Park, Seung-Hwan;Kim, Shin;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.53-56
    • /
    • 2011
  • This study is concerned with the SL shear reinforcement that it can be installed easily in filed as product at the factory and seismic performance can be achieved. The method of study is as follows. first, we researched constructability and economy of existing method. Secondly, we made specimen and were examined structural performance tests in order to verify the performance of the shear reinforcement. Shear strength of HILL01-HILL03 specimen applied to SL shear reinforcement increased about 5-14% when compared with the applied shear stirrup reinforcing existing specimens. Also, the amount of the maximum deflection of the central sub-section of HILL01-HILL03 specimen applied to SL shear reinforcement decreased about 41-42% when compared with the applied shear stirrup reinforcing existing specimens. As a result, developed SL shear reinforcement increased in shear strength and stiffness of reinforcement, structural safety is judged to be increased.

  • PDF

Prediction and Evaluation on Inequality Shortening and Long-term Deflection of High-rise Flat Plate Structure using 3D Finite Element Analysis (3차원 유한요소해석을 이용한 고층 무량판 슬래브 구조물의 부등축소량 및 장기처짐 예측 평가)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.159-160
    • /
    • 2020
  • Flat plate structures are designed in the form of long span due to the development of construction materials and the improvement of construction technology. However, a high-rise structure of a flat plate of 50 less floors is constructed without detailed review of the inequality shortening, long-term deflection of the slab, and cracks. Therefore, it is possible to examine the case of defects in the structure due to deformation and damage of non-structures such as crack and leak, deflection of the door frame, and deformation of equipment ducts. In this study, it is a high-rise structure, and the inequality shortening and long-term deflection of the slab of the flat plate structure were evaluated through finite element analysis, and it was confirmed that prior precision analysis and correction during construction is necessary.

  • PDF

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

Shear Reinforcement for Flat Plate-Column Connections Using Lattice Bars (래티스 철근을 이용한 무량판-기둥 접합부의 전단보강)

  • Ahn Kyung-Soo;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.191-200
    • /
    • 2005
  • Flat plate-column connections are susceptible to brittle punching shear failure, which may result in collapse of the overall structure. In the present study, a new shear reinforcement for the plate-column connection, the lattice shear reinforcement was developed. Experimental study for the lattice shear reinforcement was performed. Shear strength and ductility of the specimens reinforced with the lattice bars were compared with those of unreinforced specimens. The test results showed that the strength and ductility of the specimens with the lattice shear reinforcement were improved by 1.37 and 9.16 times those of the unreinforced specimens, respectively. These results indicates that the lattice shear reinforcement is superior in ductility to the shear stud-rail which is popular in U.S. Based on the test results, the design method for the lattice shear reinforcement was developed.

Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.451-458
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static and dynamic analyses both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. Especially the effect of column jacketing could be enhanced significantly when slabs were reinforced to prevent premature punching shear failure. When buckling-restrained braces are used instead of conventional braces, the structures showed more ductile behavior, especially in the 3-story structure.

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.