• Title/Summary/Keyword: 무등산응회암

Search Result 5, Processing Time 0.025 seconds

A Petrological Study of the Mudeungsan Tuff Focused on Cheonwangbong and Anyangsan (천왕봉과 안양산을 중심으로 한 무등산응회암의 암석학적 연구)

  • Jung, Woochul;Kil, Youngwoo;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.325-336
    • /
    • 2014
  • Even though Mesozoic Mudeungsan tuff, located within Neungju Basin, has been named several rock names, it should be named as Mudeungsan tuff due to several evidences, such as fiamme, welded texture and rock fragments in the Mudeungsan tuff. Volcanic eruption boundary between the Cheonwangbong and Anyangsan areas is not clear, but petrochemical and mineral chemical evidences with different ages indicate clear petrological boundary between Cheonwangbong and Anyangsan. The Mudeungsan tuffs from Cheonwangbong and Anyangsan is welded crystal tuff with dacitic composition and were generated from cogenetic calc-alkaline magma in the volcanic arc environment. Geochemical events indicate that magma beneath Cheonwangbong was seems to have been evolved from the magma beneath Anyangsan due to fractional crystallization dominated by plagioclase.

Engineering Characteristics of Mudeungsan Tuff and Ipseok-dae Columnar Joints (무등산응회암과 입석대 주상절리대의 공학적 특성)

  • Noh, Jeongdu;Jang, Heewon;Lim, Chaehun;Hwang, Namhyun;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • This study is to examine the engineering characteristics of colunmar joints in Mudeugsan National Park, a global geopark. For these purposes, physical and mechanical properties of Mudeungsan Tuff, evaluation for the weathering degree of columnar joints, and crack behavior monitoring in columnar joints were conducted. The physical properties of Mudeungsan tuff were 1.02% for the average porosity, 0.38% for the average absorption, 2.69 g/㎤ for the average specific gravity, and 4,948 m/s for the average elastic wave velocity. Its mechanical properties were 337 MPa for the average uniaxial compressive strength, 68 GPa for the average elastic modulus, 0.29 for the average Poisson's ratio, 41.3 MPa for the average cohesion strength, and 62.8° for the average friction angle. the average rebound Q-value of the silver Schmidt hammer for the three columnar joint blocks at the Ipseok-dae was shown as 49.3. when this value is converted into uniaxial compressive strength, it becomes 70.5 MPa, which is about 21% of the uniaxial compression strength of Mudeungsan tuff. In addition, according to the results of crack monitoring measurements for the three columnar joint blocks at the Ipseok-dae, the crack behavior is less than 1 mm, so it is believed that its behavior in Ipseak-dae columnar joints has hardly occured to date.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.

Potential as a Geological Field Course of Mt. Geumdang located in Gwangju, Korea (광주광역시에 위치한 금당산의 지질학습장으로서 활용성)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.235-248
    • /
    • 2013
  • The purpose of this study is to investigate a feasibility of a small mountain as a field work site on geological features in Earth sciences classes at all levels. Mt. Geumdang with the height of 305 meters from the sea level is located in the metropolitan city of Gwangju, southern part of Korea. The study reviews the human and natural geography, geological features, geomorphic resources, landscapes, and conveniences of the mountain for a possibility of meaningful field work. The population within the distance of 5 km from the mountain stands at about 620,000 and 170,000 of them are students and teachers. Mt. Geumdang has a warm temperature climate with low rainfall throughout the year, so it seems suitable for a field survey. Road network and public transportation system around the area are well-developed and easily accessible. Mt. Geumdang shows various rock type and geological structures. The basement rock is Gwangju granite, which is plutonic body of the Jurassic period. Also, granophyre (micrographic granite) and various volcanic rocks distributed as bedded tuff, lapilli tuff, and rhyolite of the Cretaceous period. Many andesitic and felsic dykes were intruded into the rock by joint system. In Mt. Geumdang, many geomorphic resources are found such as U shaped mountain, joint, fault, lamination, gnamma, tor, cliff, groove, block stream and block field, regolith, and saprolite. It has a beautiful mountain scenery including the view of whole shape of Mt. Mudeung, panoramic view of the town, Pungam lake, World Cup stadium and sunrise and sunset. Furthermore, the area has ecologic study facilities related to geology, emergency medical and convenience facilities for field works. In conclusion, Mt. Geumdang is highly feasible for geological field studies at all levels.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.