• Title/Summary/Keyword: 무기체계 효과도 분석

Search Result 128, Processing Time 0.024 seconds

A Study on Effectiveness Analysis Methods for V-C System: Applying Effective Based Operation (EBO) Methodology (효과기반 작전 방법론을 적용한 V-C 연동체계에서 전투효과 분석방법 연구)

  • Kim, Young-In;Hong, Yoon-Gee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1337-1345
    • /
    • 2012
  • The principle of Effective Based Operation applied to the Korean Theater resulted in measurable effects to win the minimum battle. Based on the finding, this study recommends the effect analysis methodology under the V-C interoperability system to acquire a weapon system. This method is followed as below; to confirm the effect data on the organized weapon system, to set MOE, MOP and effect considering the purpose of the analysis, to apply the appropriate operational concept and scenario on the weapon system, and then the available C Model is after action reviewed, adjusted, and given feedback. The V-C interoperability system enables to perform the real-time combat experiment under the virtual synthesized battlefield circumstances. The defensive battle organization and displacement of the future anti-tank guided weapon system was considered in the modeling process. Scenario was written, which encompasses company-level units and the battalion-level operation. Then the available AWAM was embodied and effect-analyzed, which formed the foundation of SBA.

A Study on the Framework for Analyzing the Effectiveness of Cyber Weapon Systems Associated with Cyberspace and Physical Space (사이버 공간과 물리 공간이 연계된 사이버 무기체계의 효과성 분석 프레임워크 연구)

  • Jang, Ji-su;Kim, Kook-jin;Yoon, Suk-joon;Park, Min-seo;Ahn, Myung-Kil;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.111-126
    • /
    • 2022
  • As operations that were only conducted in physical space in the past change to operations that include cyberspace, it is necessary to analyze how cyber attacks affect weapon systems using cyber systems. For this purpose, it would be meaningful to analyze a tool that analyzes the effects of physical weapon systems in connection with cyber. The ROK military has secured and is operating the US JMEM, which contains the results of analyzing the effects of physical weapon systems. JMEM is applied only to conventional weapon systems, so it is impossible to analyze the impact of cyber weapon systems. In this study, based on the previously conducted cyber attack damage assessment framework, a framework for analyzing the impact of cyber attacks on physical missions was presented. To this end, based on the MOE and MOP of physical warfare, a cyber index for the analysis of cyber weapon system effectiveness was calculated. In addition, in conjunction with JMEM, which is used as a weapon system effect manual in physical operations, a framework was designed and tested to determine the mission impact by comparing and analyzing the results of the battle in cyberspace with the effects of physical operations. In order to prove the proposed framework, we analyzed and designed operational scenarios through domestic and foreign military manuals and previous studies, defined assets, and conducted experiments. As a result of the experiment, the larger the decrease in the cyber mission effect value, the greater the effect on physical operations. It can be used to predict the impact of physical operations caused by cyber attacks in various operations, and it will help the battlefield commander to make quick decisions.

Logical Modeling of Base System Model for Tank Engagement Simulation (전차 교전 시뮬레이션을 위한 기본체계모델의 논리 모델링 방법)

  • Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Tank, which is a representative ground weapon system, is one of the most important weapon systems in each country. For the cost-effective acquisition of a tank based on scientific analysis, the operational concept and effectiveness should be studied based on engagement simulation technology. Besides physical capabilities including maneuver and communication, logical models including decision-making of a tank commander should be developed systematically. This paper describes a method to model a tank for engagement simulation based on Base System Model(BSM), which is the standard architecture of the weapon system model in AddSIM, an integrated engagement simulation software. In particular, a method is proposed to develop logical models by hierarchical and modular approach based on human decision-making model. The proposed method applies a mathematical formalism called DEVS(Discrete EVent system Specification) formalism. It is expected that the proposed method is widely used to study the operational concept and analyze the effectiveness of tanks in the Korean military in the future.

An Ontology-based Cloud Storage for Reusing Weapon Models (무기체계 모델 재사용을 위한 온톨로지 기반 클라우드 저장소 연구)

  • Kim, Tae-Sup;Park, Chan-Jong;Kim, Hyun-Hwi;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • Defense Modeling and Simulation aims to provide a computerized war environment where we can analyze weapon systems realistically. As we invest significant efforts to represent weapon systems and their operational environments on the computer, there has been an increasing need to reuse predefined weapon models. In this paper, we introduce OB-Cloud (Ontology-Based Cloud storage) to utilize predefined weapon models. OB-Cloud has been implemented as a repository for OpenSIM (Open Simulation engine for Interoperable Models), which is an integrated simulation environment for aiding weapons effectiveness analysis, under the development of our research team. OB-Cloud uses weapon ontology and thesaurus dictionaries to provide semantic search for reusable models. In this paper, we present repository services of OB-Cloud, including registration of weapon models and semantic retrieval of similar models, and illustrate how we can improve reusability of weapon models, through an example.

Effectiveness Analysis and Profile Design Automation Tool Implementation for The Mass Production Weapon System Environmental Stress Screening Test (양산 무기체계 환경 부하 선별 시험 효과도 분석 및 프로파일 설계 자동화 도구 구현)

  • Kim, Jang-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.379-388
    • /
    • 2016
  • There are various system defects from weapons manufacturing due to the numerous production processes and various production environments. The first kind of defect is patent defects, which can be detected by visual inspection, functional testing, and existing quality control procedures during the manufacturing process. The second kind is latent defects, which cannot be detected though existing quality management approaches because of the complexity of the system and manufacturing process. To minimize the initial defect problems, environmental stress screening (ESS) is needed to detect the defects, remove them, and improve the product conditions based on the environmental stress conditions of temperature and vibration. We implemented a tool for quantitative ESS effectiveness analysis and profile design automation based on MIL-HDBK-344 and verified it using six scenarios with different temperature stress, vibration stress, and test designs.

A Study on Simple Methodology of Distruction Effects Analysis 3 Dimensional Building Target's by Weapon Systems (무기체계 3차원 건물표적에 대한 간이 파괴효과분석 방법론 연구)

  • Park, Jinho;Choi, Sangyeong;Kim, Yeongho
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • In order to use missiles more effectively, assessing methodologies was advanced about weapon effects for various target types. We tried to find out the most effective analysis methodologies for missiles to attack 3 dimensional building target's and analyzed adaptedness as an assessing methodology. There are EFD (Expected Fractional Damage) and SSPD (Single Sortie Probability of Damage) methodologies to assess building target damage. In order to calculate effectiveness we used input parameter such as size of the target and CEP (Circular Error Probable), MAE_bldg (Mean Area of Effects for Building) of weapons and impact angle as encountering condition between the target and the missile. We compared EFD and SSPD, in order to analyze adaptedness as a effective methodology by CEP and MAE. The result was that EFD methodology was more adaptive to assess 3 dimensional building targets by missile systems than SSPD.

Effect Analysis of WBS-Based Technology Research and Analysis Methodology for Defense Technology Planning : With 'A' Missile System (국방기술기획을 위한 WBS 기반 기술 조사·분석 방법론의 효과분석 : 'A' 미사일 무기체계 중심으로)

  • Kim, Mi Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.211-217
    • /
    • 2020
  • Technology planning in the defense field aims to develop core technologies in order to develop weapon systems to satisfy the force integration period by researching and analyzing necessary technologies for weapon systems. In the past, core technology development projects were conducted by deriving core technology based on the main required operational capability. But in this case, there is the limitation that technologies which are necessary to develop weapon systems but do not directly affect required operational capability, such as system integration technologies, are not considered. In this paper, we propose a work breakdown structure-based technology research and analysis methodology that prevents vacant technologies by identifying core technologies that must be secured for the development of weapon systems at the component level. With the proposed methodology, it is possible to identify technologies that must be acquired to realize the required operational capability of systems or which must be secured even they do not affect the required operational capability.

Performance Evaluation and Analysis of Tactical Multiband Multirole Radio in the Ground Weapon System (지상 무기체계 환경에서 전술다대역다기능무전기의 성능 평가 및 분석)

  • Park, Junho;Jang, Jaemin;Kim, Yongho;Yi, Jeonghoon;Lee, Jaehyun;Cho, Kilseok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.111-112
    • /
    • 2019
  • 최근의 전장 환경은 전투 공간에서 파악 가능한 모든 요소를 효과적으로 연계하여 정보의 우월성을 기반으로 전투력을 향상시키는 네트워크 중심전 체제로 진화하고 있다. 이에 우리 군은 네트워크 중심 전장 환경의 핵심 요소로서 전술다대역다기능무전기를 개발해왔으며, 기존 아날로그 방식 무전기를 기반으로 네트워크를 구성하여 운용하는 체계에 순차적으로 적용될 예정이다. 이는 지상 무기체계도 예외는 아니다. 이러한 상황에 따라, 본 논문에서는 지상 무기체계 환경에서 전술다대역다기능무전기의 성능 평가 및 분석을 수행한다. 성능 평가에서는 실제 전술다대역다기능무전기를 기반으로 지휘통제체계와 무장통제장치 간의 무선 통신환경을 모의 구성하여 성능 시험을 수행하였으며, 결과 분석을 통해 전술다대역다기능무전기의 지상 무기체계 적용 가능성을 확인한다.

  • PDF

Simulation Based Study to Verify the Required Operational Capability of the Para-Observation Munition (관측포탄 작전운용성능 검증을 위한 시뮬레이션 연구)

  • Ha, Set Byul;Kwon, Ojeong;Lee, Youngki;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.87-101
    • /
    • 2021
  • Required Operational Capability(ROC), which means the performance of a weapon system, is determined when estimating the requirements of a new weapon system. It is very important to define the ROC as it has a decisive influence from acquisition of a weapon system to tactical operation. In this study, we propose a simulation methodology to verify the ROC of the Para-Observation Munition(POM), a newly developed weapon system. To this end, we propose a discrete-event simulation model that takes main performance of the weapon system constituting the ROC and environmental factors that affect performance of the weapon system as input values, and outputs operational effect as a result value. It describes various simulation logic required to implement a simulation model, and explains how to verify ROC using various simulation results such as sensitivity analysis. POM is a weapon system that does not have a similar one and that is difficult to directly utilize the military analysis model. This study can be used as a methodology to analyze the ROC and predict operational effects of weapon systems such as POM.

Development of Simulation Logic for Wargame Model Based on Warhead Detonation Test Data (탄두 기폭실험 결과를 활용한 워게임모델 모의논리 개발)

  • Seil An;Yongseon Lee;Sungho Choi ;Sangwoo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.13-25
    • /
    • 2024
  • In the performance analysis of a weapon system, the combat effectiveness is difficult to go beyond the conceptual level in the early stages of development. This is especially true in the case of new concept of weapon system that has never existed before. In this study, with the aim of analyzing the effectiveness of small personal guided weapons, the design of the warhead and the detonation test were carried out and the results were analyzed. Afterwards, trajectory of fragments were calculated from the results, and it is applied to the anti-personnel effectiveness logic which is a part of combat simulation tool. At the same time, delivery accuracy logic was constructed from Monte-Carlo simulation with 6-DOF trajectory model. Subsequent simulated experiments were conducted with test scenarios to confirm the simulation logic reflecting the results of the warhead detonation tests for verifying the simulation approach of weapon systems, and it was confirmed that the simulation logic incorporating the results of the warhead detonation tests functioned properly.