• Title/Summary/Keyword: 무기이온

Search Result 529, Processing Time 0.023 seconds

Effects of Salt Stress on Inorganic Ions and Glycine Betaine Contents in Leaves of Beta vulgaris var. cicla L. (염 스트레스가 근대(Beta vulgaris var. cicla L.)의 무기이온 및 glycine betaine 함량에 미치는 영향)

  • Choi, Sung-Chul;Kim, Jong-Guk;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.388-394
    • /
    • 2013
  • Growth, inorganic solutes and glycine betaine accumulation in spinach beet (Beta vulgaris var. cicla L.) were studied under different salt conditions. Plants of fortythree days old were assessed by growing for a further 10 and 20 days at four NaCl concentrations (0, 100, 200, 300 & 400 mM). The dry weight of leaves was maximal in plants which were grown at 100 to 200 mM NaCl treatments and after 10d it was decreased slightly at salt treatments of more than 300 mM NaCl. Under the salt conditions, leaves of B. vulgaris contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. Total ionic content and osmolality increased with increasing salt concentration. Salt stress led to a preferential accumulation of glycine betaine in leaves of B. vulgaris, especially for the 200 mM NaCl treatment. These findings suggest that a high degree of NaCl tolerance of B. vulgaris resulted from the accumulation of glycine betaine, which is known to have osmoprotectant properties in the cytoplasm.

Determination of Impurities in Aluminum by Neutron Activation Analysis

  • Kim, Nak-Bae;Bak, Hae-ill;Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 1980
  • A radiochemical separation scheme for the neutron activation analysis is developed for the determination of 28 elements in aluminum. The scheme is based on a group separation using ion-exchange resin and mineral exchanger. Present work has employed mineral acids and their partly organic mixture excluding HF as the media as well as common glass wares. For the determination, gamma-ray spectroscopy using $3"\times3"\;Nal(TI)$ detector and a single comparator method are used.

  • PDF

전해질로의 이온성 액체 응용

  • 김동범;원종옥;김훈식
    • Polymer Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.449-456
    • /
    • 2004
  • 이온성 액체 (ionic liquid)는 유기 양이온과 유기 (또는 무기) 음이온으로 이루어진 화합물이다. 이온들이 작아, 서로 가깝게 packing되어 있는 일반 이온성 염 (상온에서 고체상)과는 다르게, 이온성 액체는 양이온과 음이온의 크기가 상대적으로 커서, packing이 잘 되지 않아 낮은 lattice energy를 갖고 있게 되어,$^1$ 10$0^{\circ}C$나 그 이하의 낮은 녹는점을 갖는 염이다. 녹는점, 밀도, 점도, 친수성 및 소수성 특성은 주어진 이온성 액체의 양이온과 음이온을 적절히 선택하면 얼마든지 조절할 수 있어, 이온성 액체를 des구nor solvent로 부르고 있다.(중략)

  • PDF

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • 송승달;김진아;추연식;배정진;김인숙;추보혜;이인중
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through inoic balances and osmoregulations under different environmental salt gradients. Plats were harvested in two weeks from treatments with salt gradients (0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, 1/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated slats into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var. cicla. The absorption of inorganic Ca/sup 2+/ ions was inhibited remarkably due to the excess uptake of Na+ with increasing salinity. The K+ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increased. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were 0.2∼2.5 μM/g plant water and 0.1∼0.6μM/g plant water, respectively.

Effect of Surfactant Addition in Nutrient Solution on Mineral Nutrient Uptake and Growth of Lettuce in DFT Culture (계면 활성제 처리가 수경재배 상추의 무기이온 흡수 및 생육에 미치는 영향)

  • Choi Ki Young;Yang Eun Young;Moon Byung-Woo;Seo Tae Cheol
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2004
  • This study was conducted to evaluate the effect of different surfactants on the fertilizer reduction and increase of the mineral nutrients uptake of lettuce (Latuca sativa L. 'Hanbatchungchima') in deep flow technique culture. The measured items from lettuce leaves expanded fully were growth, photosynthetic and transpiration rate, and mineral nutrient content K, Ca and Mg, respectively. The highest growth were observed at $0.3mg{\cdot}L^{-1}$ polyvinyl alcohol (PV4-95) treatment, including lettuce grown in the half strength of nutrient solution. The highest photosynthetic rate, transpiration rate and mineral nutrient content were observed at $0.3mg{\cdot}L^{-1}$ calcium lignosulfate (CLS) treatment. Therefore, high-quality leaf lettuce production could be achieved by apply proper surfactants PVA-95 and CLS, which can cut down the total amount of fertilizer and increase uptake of mineral nutrients.

Effect of Irrigation volume on Ions Content in Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액량이 근권부 무기이온에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Also, t-cincreaseisdecreasein order In hydroponics, the accumulation of inorganic ions in the root zone are closely related to the irrigation volume. Therefore, the effects of irrigation volume on the growth and yield of tomatoes are very signigicant. This study was conducted to investigate the effect of irrigation volume on inorganic ions of root zone in hydroponic culture using coir substrate. The irrigation volume was adjusted to 4 levels depending on the integrated solar radiation for each growth period. The drainage ratio was calculated by daily amount of irrigation and drainage. The higher irrigation volume is, drainage ratio and water absorption tended to increase. But, the water absorption in the treatment of high irrigation volume was decreased in February and March compared to the treatment of medium high irrigation volume. By calculating monthly average irrigation volume and the drainage ratio, 120 to 1$40J/cm^2$ in January, 100 to $120J/cm^2$ in February, 80 to $100J/cm^2$ in March, 70 to $90J/cm^2$ in April and 60 to $75J/cm^2$ in May was detected as appropriate irrigation volume ranges which drainage ratio was 20-30%. The higher irrigation volume, the lower the concentration of ions decrease, which could prevent the accumulation of nutrients in the root zone. However, due to the characteristics of the coir substrate that absorbs ions, concentration of ions was significantly high when the drainage ratio was 20-30%. However, concentrations of P and K were sometimes lower in the drainage than that of irrigation water regardless of the treatment. Mg and S were the most highly accumulated ions even in the treatment of high irrigation volume. In low radiation season, there was no difference in the ion concentration in the drainage depending on the irrigation volume. In high radiation season, the lower irrigation volume, resulted to the higher ion concentration in the drainage. After March, it was difficult to prevent the increase of ions concetration in the drainage by only adjusting irrigation volume. Thus, it is necessary to decrease the EC of irrigation solution to prevent the accumulation of nutrients in the root zone.

In-situ Monitoring for hybridization between GPS and Alumina Nano Sols (알루미나 나노 졸과 GPS와의 하이브리드화 과정 분석)

  • 황영영;김재홍;석상일
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.243-243
    • /
    • 2003
  • 무기 나노 입자와 유기물간의 균일한 화학적 결합으로 제조된 나노 구조형 재료는 수많은 용도에 부응할 수 있는 기계적, 전기적 및 광학적 특성을 설계, 제조하는데 유용한 방법으로 사용되고 있다. 이중 화학적 습식 졸-겔 공정은 나노 구조형 유/무기 하이브리드 재료 제조에 매우 효과적인 방법으로 알려져 있으며 내부식성 금속 코팅막, 내 스크래치 코팅막 제조에 활용되고 있다. 그러나 무기 나노 졸 입자와 유기물과의 매개로 작용하는 커플링제와의 하이브리드 과정에 대한 정보는 극히 조금 알려져 있다. 본 연구에서는 알루미나 나노 졸과 GPS((3-glycidoxypropyl-triethoxysilane)와의 하이브리드 생성 과정을 이온 전도도 측정으로 관찰한 결과를 보고하고자 한다. 알루미나 나노 졸은 Al(NO$_3$)$_3$.9$H_2O$ 수용액에 NH$_4$OH를 가하여 침전물을 얻고 여과 및 수세하여 졸 입자의 함량이 약 5 wt%가 되게 이온교환수와 해교제인 초산을 소량 가하여 10$0^{\circ}C$에서 약 50시간 열처리하는 방법으로 제조하였다. 알루미나 졸 입자와 GPS와의 결합 과정을 reactor FT-IR로 시간에 파라 연속적으로 분석하여 그 반응 경로를 이온 전기전도와 비교하여 논의 될 것이다. 아래 그림 1은 알루미나 나노 졸에 GPS를 첨가한 후 시간에 따라 얻어진 이온 전기전도도를 나타낸 그림이다.

  • PDF