• Title/Summary/Keyword: 목질바오이매스

Search Result 1, Processing Time 0.019 seconds

Isolation and biochemical characterization of acid tolerance xylanase producing Bacteria, Bacillus sp. GJY from city park soil (도심공원으로부터 산내성 xylanase를 생산하는 박테리아 분리 및 효소학적 특성)

  • Jang, Min-Young;Park, Hwa Rang;Lee, Chong Gyu;Choo, Gab-Chul;Cho, Hyun Seo;Park, Sam-Bong;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • Microbes in forest are very important due to not only to enhance soil fertility but also maintain a healthy ecosystem by supplying the energy available to living organisms by producing various kinds of enzymes related to degradation of lignocellulosic biomass. In order to isolate a lignocellulosic biomass degrading bacterial strain from the Jurassic park located in Gyeongnam National University of Science and Technology, We used the Luria-Bertani-Carboxymethyl cellulose (CMC) agar trypan blue method containing 0.4 % carboxymethyl cellulose and 0.01 % trypan blue. As a result, we isolated a bacterial strain showing both activity on the CMC and xylan. To identify the isolated strain, 16S rRNA sequencing and API kit analysis were used. The isolated strain turned out to belong to Bacillus species and then named Bacillus sp. GJY. In the CMC zymogram analysis, it showed that one active band of about 28kDa in size is present. Xylan zymogram analysis also showed to have one active band of about 25kDa in size. The optimal growth temperature of Bacillus sp. GJY was $37^{\circ}C$. The maximal activities of CMCase and xylanase were 12 hour after incubation. The optimal pH and temperature for CMCase were 5.0 and $40^{\circ}C$, respectively, whereas the optimal pH and temperature for xylanase was 4.0 and $40^{\circ}C$. Both activities for CMCase and xylanase showed to be thermally stable at 40and $50^{\circ}C$, while both activities rapidly decreased at over $60^{\circ}C$.