본 논문은 기개발된 간선도로 연동하 신호최적화 모형인 KS-SIGNAL의 최적화 수행속도를 향상하기 위한 새로운 모형식 및 방법론을 제시하고 평가하였다. 본 논문에서는 탑재, 좌회전 현시순서에 관한 제약식 추가 등의 3단계 작업을 실시하였다. 첫 번째 단계인 모형식의 수정에 있어서는 기존의 모형식에서 변수로 사용하던 대가차량 소거시간을 상수로 산정함으로써 일부 제약식 및 변수를 소거시킬 수 있었으며, 두 번째 단계에서는 선형계획식의 해를 구하기 위한 툴로 사용되는 Wondow용 Lindo library를 탑재, 새로이 변형된 형식의 모형식을 제안한다. 마지막으로 세 번째 단계에서는 좌회전 현시 순서에 관한 제약식을 추가함으로써 최적화 작업에 대한 경우의 수를 줄임으로써 수행속도를 향상시키는 방법론에 대해 제시한다. 결론적으로 기존의 KS-SIGNAL과 비교해 최적화 수행속도는 99%이상 향상되었으며, 도출된 해 또한 타 모형식과 비교해 우수한 결과를 나타냈다.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.18
no.4
/
pp.360-371
/
2006
In order to calculate waves propagating into the shallow water region, a generalized parabolic approximate model is presented. The model is derived from the modified mild slope equation and includes all the existing parabolic models presented in the paper. Numerical results are presented in comparison to laboratory data of Berkhoff et al.(1982). The existing parabolic model shows almost same accuracy against the modified parabolic model and both results of models stand in closer agreement to the laboratory data. Therefore the existing parabolic model based on mild slope equation is a useful tool to compute shallow water waves which turns out to be more fast and stable in computational aspect.
현재의 항공사 기내식 수요예측 시스템으로는 항공기 운항의 지연이나 초과 주문으로 인한 손실 문제를 해결하기 힘든 것으로 알려져 있다. 이러한 문제를 해결하기 위해 본 연구에서는 항공기 기내식 시계열 자료만을 입력변수로 사용한 단순인공신경망모형(simple neural network model), 단순인공신경망모형에 전통적인 시계열 기법(본 연구에서는 지수 평활법)의 예측 결과를 입력변수로 추가한 혼합인공신경망모형(hybrid neural network model), 그리고 혼합인공신경 망 모형에 상관관계가 높은 다른 시계열 자료(본 논문에서는 유사 노선의 다른 항공기 기내식 시계열 자료)를 인공신경망의 입력변수로 추가시킨 하이퍼혼합인공신경망모형(hyper hybrid neural network model)을 새로운 항공기 기내식 수요예측 기법으로 제안하고, 이들 모형의 예측력을 비교 분석하였다. 분석 결과 하이퍼혼합인공신경망 모형의 예측력이 가장 우수한 것으로 나타나, 인공신경 망을 기반으로 한 수요예측에 있어 상관관계가 높은 다른 시계열 자료를 입력변수로 추가함으로써 인공신경망모형의 예측력을 개선시킬 수 있음을 알 수 있었다
고속도로-연결로는 두 개의 교통흐름이 서로 상충되는 지점으로서 복잡한 교통행태를 나타내고 고속도로 구간 중 용량저하 및 교통와해현상, 난류현상이 일어나는 구간으로서 운영상 문제점이 많이 일어나고 있는 상태이다. 이 구간에서의 운영상태가 전체 시설물의 운영상태에 큰 영향을 끼친다는 점을 감안할 때, 이 구간의 국내자료를 토대로 한 교통류 분석은 중요한 의미를 가진다. 따라서, 교통행태에 대한 미시적인 분석이 이루어지지 않은 상태로 기존의 HCM 모형과 같은 거시적인 분석 방법만을 가지고는 분류구간 교통현상을 규명하기 어렵다. 본 연구에서는 기존 연구들 분석방법의 문제점을 해결하기 위해, 고속도로-연결로 구간중 유출부 구간을 대상으로 현장조사를 실시하였고, 지점(구간)과 차로로 세분하여 미시적인 방법으로 교통특성을 규명하였다. 또 한 유출부 구간의 여러 지점에서 지점 및 차로별 교통량을 예측할 수 있는 교통분포 모형식을 개발하였다. 정립된 교통분포 모형식을 적용해 본 결과 유출부 구간의 분석 및 서비스 수준의 평가는 연결로 접속차로(Vl)의 교통량만을 고려하여 분석하는 것은 합리적이지 않고, 연결로나 본선 모두와 진입부를 포함한 연결로 전체를 다 고려해야 한다는 것을 알 수 있었다. 미시적인 분석방법을 통한 차로별 교통분포 모형식은 기존 분석방법과 비교하여 더 정확하게 그리고 폭 넓은 분석 및 적용하기에 손쉬운 모형이라는 점에서 상당히 효과적인 분석방법이라고 할 수 있다. 하지만 본 연구의 결과는 한 조사지점에 대한 적은 자료를 토대로 하였기 때문에 실제적용 가능성에서 향후 보강할 필요가 있으며, 다른 지점의 현장조사와 세밀한 비교연구가 필요하다.
도시화물수요예측모형에는 화물기반모형과 트럭통행기반모형이 있는데 화물기반모형은 화물체계가 기본적으로 화물운송과 관계가 있다는 개념에 기초를 두고 있으며, 차량이 아닌 화물의 움직임을 주요 분석대상으로 삼고 있다. 반면에, 트럭통행기반모형은 집합화된 독립변수를 이용하여 각 죤(Zone)에 유·출입하는 트럭의 통행을 분석하는 것이다. 본 연구의 목적은 트럭통행기반모형의 O-D 추정시 화물통행과 트럭통행 사이의 관계식을 산출하고 이를 설명할 수 있는 통행거리분포함수(Trip Length Distribution : TLD)를 추정함에 있다. 본 연구의 자료는 교통개발연구원에서 수행한 '서울시 물류조사 및 물류종합계획수립구상(1998)'의 화물 물동량 조사 자료를 이용하였으며, 이를 통해 통행거리분포에 따르는 화물 및 차량의 비율을 함수로서 나타내었다. 본 연구를 통하여 트럭통행기반모형에서 트럭통행거리분포를 이용하여 화물기반모형에서 도출할 수 있는 화물의 통행거리분포를 추정할 수 있었으며, 또한 각각의 통행거리분포는 감마분포를 이용하여 함수식으로 도출하고 상기한 두 가지 분포모형을 하나의 관계식을 통해 재산정할 수 있는 이론적인 틀을 제공하였다는 데 의의가 있다고 하겠다. 트럭통행거리분포, 화물통행거리분포 모두 통계적인 검증을 통해 적합한 것으로 분석되었으며, 전체화물의 통행거리분포와 매개함수를 통해 재산정된 모형의 결과 값 또한 통계적으로 유의하였다. 품목별 적용에서는 잡공업품과 화학공업품은 본 연구의 매개함수식을 통해 화물거리분포 모형이 적합하였으나 금속공업 품과 경공업품은 다소 차이가 있는 것으로 분석되었다.
In our Koreans river basins there are many of monthly rainfall data, but unfortrnately streamflow data needed are rare. Analysing monthly rainfall data of Somjin river basin, the stochastic theory model for calculation of monthly streamflow series of that region is determined. The model is composed of Box & Jenkins stansfer function plus ARIMA residual models. This linear stochastic differenced time series equation models can adapt themselves to the structure and variety of rainfall, streamflow data on the assumption of the stationary covarience. The fiexibility of Box-Jenkins method consists mainly in the iterative technique of building an AIRMA model from observations and by the use of autocorrelation functions. The best models for Somjin river basin belong to the general calss: $Y_t=($\omega$o-$\omega$_1B) C_iX_t+$\varepsilon$t$$Y_t$ monthly streamflow, $X_t$ : monthly rainfall, $C_i$ :monthly run-off, $$\omega$o-$\omega$_1$ : transfer parameter, $$\varepsilon$_t$ : residual The streamflow series resulted from the proposed model is satisfactory comparing with the exsting streamflow data of Somjin gauging station site.
KS-SIGNAL, a traffic signal optimization model for coordinated arterials, is an optimization model using the mixed integer linear Programming that minimizes total delay on arterials by optimizing left-turn Phase sequences. However, the Previous version of KS-SIGNAL had a difficulty in reducing computation speed because the related variables and constraints multiply rapidly in accordance with the increase of intersections. This study is designed to propose a new model, improving optimizing computation speed in KS-SIGMAl, and evaluate it. This Paper Puts forth three kinds of methodological approaches as to achieve the above goals. At the first step to reduce run-time in the proposed model objective function and a few constraints are Partially modified, which replaces variable in related to queue clearance time with constant, by using thru-movements at upstream intersection and the length of red time at downstream intersection. The result shows that the run-time can be reduced up to 70% at this step. The second step to load the library in LINDO for Windows, in order to solve mixed integer linear programming. The result suggests that run-time can be reduced obviously up to 99% of the first step result. The third step is to add constraints in related to left-turn Phase sequences. The proposed methodological approach, not optimizing all kinds of left-turn sequences, is more reasonable than that of previous model , only in the view of reducing run-tim. In conclusion, run-time could be reduced up to 30% compared with the second results. This Proposed model was tested by several optimization scenarios. The results in this study reveals that signal timing plan in KS-SIGNAL is closer to PASSER-II (bandwidth maximizing model) rather than to TRANSYT-7F(delay minimizing model).
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.731-736
/
2005
현재 국내 주요 하천의 홍수예경보시스템 운영과 다목적댐의 홍수조절관리를 위하여 수문학적 모형의 하나인 저류함수모형(Storage Function Model)을 사용하고 있다. 저류함수모형은 산지가 많은 유역에 적합하도록 개발된 모형으로, 계산절차가 간편하고 홍수유출의 비선형성을 고려할 수 있는 방법이므로 선형모형보다 합리적이라고 알려져 있다. 그러나 저류함수모형을 실제 홍수유출현상에 적용하는데 있어 매개변수를 결정하는 것이 매우 어렵다. 현재 매개변수들을 결정할 수 있는 객관적이고 합리적인 방법이 제시되어 있지 않기 때문에 모형의 매개변수를 결정할 때 경험식을 이용하거나 수문기술자의 판단에 의한 보정에 의존하고 있다. 따라서, 본 논문에서는 홍수통제소에서 사용하고 있는 저류함수 모형의 대표(평균) 매개변수와 경험식, 시행착오법(trial & error method) 및 최적화기법(optimization technique) 중에 Rosenbrock 방법을 이용하여 매개변수를 산정하고 이들을 비교 분석하고자 한다.
Since the release of mid-term domestic GHG goals until 2020, in 2009, some various GHG reduction policies have been proposed. There are two types of modeling approaches for identifying options required to meet greenhouse gas (GHG) abatement targets and assessing their economic impacts: top-down and bottom-up models. Examples of the bottom-up optimization models include MARKAL, MESSAGE, LEAP, and AIM, all of which are developed based on linear programming (LP) with a few differences in user interface and database utilization. In this paper, we suggest a simplified LP formulation and how can build it through step-by-step procedures.
Kim, Kyeung;Kang, Moon Seong;Song, Jung Hun;Jun, Sang Min
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.288-288
/
2016
유역단위 오염부하량 산정에는 SWAT, HSPF 등의 물리적 매개변수 기반 분포형 모형이 주로 사용되고 있으나, 공간분포형 입력자료로 인한 많은 매개변수는 모의 과정을 복잡하게 하며, 보정 과정에 있어 많은 시간과 노력을 요구하는 단점이 있다. 이로 인해 실무에서는 원단위법이나 유량-부하량 관계식과 같은 통계적 분석에 의한 회귀식이 주로 사용되고 있다. 그 중 LOADEST는 회귀식 기반 프로그램으로, 다양한 연구자들에 의해 연구되고 있으나, 수질 모형과의 모의능력을 비교하는 연구는 부족하다. 본 연구에서는 청미천 상류유역을 대상으로 유역특성에 따른 LOADEST 기반 회귀식의 매개변수를 추정하여 오염부하량을 모의하고, SWAT 모형에 의한 오염부하량 모의결과와 비교 평가하고자 한다. 모형의 구동 및 회귀식 매개변수 추정에 필요한 입력 자료는 용인시 백암면 일대에서 2013년부터 2015년까지 모니터링한 수질, 유량 및 기상자료와 지형자료 (토지이용도, 토양도, 수치표고자료)를 이용하여 구축하였다. LOADEST 기반 회귀식의 매개 변수 추정은 김계웅 (2015)이 개발한 방법을 사용하였으며, 유역면적, 토지이용비율 등은 지형자료를 이용하여 산정하였다. SWAT 모형의 보정은 2013년부터 2014년까지의 자료를 이용하였으며, 2015년 자료를 이용하여 검정하였다. 본 연구의 결과는 비점오염원 모델에 대한 이해를 넓히고, 오염부하량 모의를 위한 모형 선정에 있어 도움이 될 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.