• 제목/요약/키워드: 모형기반 군집분석

검색결과 66건 처리시간 0.023초

스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구 (A study on electricity demand forecasting based on time series clustering in smart grid)

  • 손흥구;정상욱;김삼용
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.193-203
    • /
    • 2016
  • 본 논문은 ICT기반 시장에서의 수요관리시스템에서의 핵심 요소인 전력 수요 예측을 위하여, 전체 사용량을 기반으로 예측 하는 방식이 아닌, 시계열 기반 군집분석을 통한 군집별 예측량의 결합을 실시하였다. 시계열 군집 분석 방법으로서 Periodogram 기반의 정규화 군집분석, 예측 기반의 군집분석, DTW(Dynamic Time Warping)를 이용하여 군집화를 시도하였으며, 군집 별 수요예측 모형으로서 DSHW(Double Seasonal Holt-Winters) 모형, TBATS(Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components) 모형, FARIMA(Fractional ARIMA) 모형을 사용하여 예측을 실시하였다. 전체 사용량을 기반으로 예측 하는 방식이 아닌, 군집분석을 통한 군집별 예측량의 결합이 더 낮은 MAPE로 나타남에 따라 우수한 예측 방법으로 판단되었다.

마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교 (Comparison of clustering methods of microarray gene expression data)

  • 임진수;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.39-51
    • /
    • 2012
  • 군집분석은 마이크로어레이 발현자료에서 유전자 혹은 표본들의 유사한 특성을 갖는 연관구조를 조사하는데 중요한 도구이다. 본 논문에서는 마이크로어레이 자료에서 계층적 군집방법, K-평균법, PAM (partitioning around medoids), SOM (self-organizing maps) 그리고 모형기반 군집방법 들의 성능을 3가지 군집 타당성 측도인 내적 측도, 안정적 측도 그리고 생물학적 측도를 가지고 비교분석하고자 한다. 모의실험을 통해 생성된 자료와 실제 SRBCT (small round blue cell tumor) 자료를 가지고 여러 가지 군집방법들의 성능을 비교하였으며 그 결과 모의실험 자료에서는 거의 모든 방법들이 3가지 군집측도에서 원래 자료와 일치하는 좋은 군집 결과를 나타내었고 SRBCT 자료에서는 모의실험 자료처럼 명확한 군집화 결과를 보여주지는 않으나 내적측도의 실루엣 너비 (Silhouette width) 관점에서는 PAM 방법, SOM, 모형기반 군집방법 그리고 생물학적 측도에서는 PAM 방법과 모형기반 군집방법이 모의실험 결과와 비슷한 결과를 얻었고 안정적 측도에서 모형기반 군집방법이 다른 방법들보다 좋은 군집결과를 보여주었다.

군집분석 비교 및 한우 관능평가데이터 군집화 (A Comparison of Cluster Analyses and Clustering of Sensory Data on Hanwoo Bulls)

  • 김재희;고윤실
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.745-758
    • /
    • 2009
  • 자발적인 군집을 유도하는 다변량 통계기법으로 널리 사용되는 군집분석은 데이터에 기반한 탐색적 방법으로 쓰이며 군집원칙에 따라 여러 가지 방법이 제안되어 왔다. 또한 군집화된 결과에 대하여 유효성을 측정하는 측도도 다양한방법이 개발되었다. 본 연구에서는 계층적 군집분석 방법으로 최장연결법과 Ward의 방법, 비계층적 군집분석 방법으로 K-평균법 그리고 확률분포정보를 활용한 모형기반 군집분석방법을 이용하여 모의실험으로 군집분석을 실시하고 군집유효성 측도로는 연결성, Dunn 지수, 실루엣을 구하여 각 군집방법에 대해 유효성을 비교한다. 또한, 한우 관능평가 데이터에 군집분석을 적용하여 최적의 군집 상황을 구하고자 한다.

효모 마이크로어레이 유전자발현 데이터에 대한 군집화 비교 (Comparison of clustering with yeast microarray gene expression data)

  • 이경아;김재희
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권4호
    • /
    • pp.741-753
    • /
    • 2011
  • 마이크로어레이 유전자 발현데이터인 효모데이터를 이용하여 군집분석을 실시하였다. 모형기반 군집방법, K-평균법, 중앙값 중심분포 (PAM), 자기 조직화 지도 (SOM), 계층적 Ward 군집방법을 이용하여 군집화를 실시하고, 연결성 측도 (connectivity), Dunn지수, 실루엣 측도 (silhouette)를 이용하여 각 군집방법에 대한 유효성을 측정하고 군집분석 결과를 비교하고자한다.

정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택 (Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model)

  • 김승구
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.821-834
    • /
    • 2013
  • Law 등 (2004)은 군집분석에서 변수선택을 위해 정규분포기반 "두각 혼합모형(salient mixture model)"의 사용을 제안하였다. 본 논문에서는 이 모형의 적합 상의 문제점과 변수선택의 결함을 지적하고 그 대안을 제시한다. 모의자료와 실자료를 바탕으로 제안된 방법이 기존의 방법보다 유용함을 보였다.

이분산 상황 하에서 정규혼합모형 기반 군집분석의 변수선택 (Variable Selection in Normal Mixture Model Based Clustering under Heteroscedasticity)

  • 김승구
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1213-1224
    • /
    • 2011
  • 관측치의 개수보다 변량의 개수가 더 많은 다변수 상황에서 정규혼합모형을 이용하여 군집분석을 하기 위해서는 비정보적인 변수들을 제거하는 과정이 필수적으로 요구된다. 이와 같은 변수선택과 군집의 동시 처리를 위한 기존 연구의 대부분은 군집별 등분산 가정 하에서 이루어져 왔으며, 비정보적인 변수를 제거하기 위해 주로 벌점화 우도 기법이 이용되었다. 본 연구에서는 약간 변형된 정규혼합모형을 기반으로 비현실적인 등분산 가정을 탈피하면서 효율적으로 비정보적인 변수를 제거하는 새로운 방법을 제공한다. 이 모형에 대한 타당성을 설명하였고, 모수 추정을 위한 EM 알고리즘을 유도하였다. 그리고 모의실험 및 실자료 실험을 통해 제안된 방법의 유효성을 보였다.

효모 마이크로어레이 유전자 발현 데이터에 대한 유전자 선별 및 군집분석 (Gene Screening and Clustering of Yeast Microarray Gene Expression Data)

  • 이경아;김태훈;김재희
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1077-1094
    • /
    • 2011
  • 마이크로어레이 유전자 발현 데이터인 yeast cdc15에 대해 시계열 데이터의 특성을 반영한 푸리에 계수를 이용한 검정통계량과 FDR 다중비교법을 이용하여 차별화된 유전자를 선별한 후 선별된 유전자들에 대해 모형기반 군집방법, K-평균법, PAM, SOM, 계층적 Ward 군집방법과 Fuzzy 군집방법을 실시하였다. 군집방법에 따른 특성을 알아보고 군집화 결과와 내부유효성 측도로 연결성 측도, Dunn 지수와 실루엣 값을 살펴본다. 또한 GO분석을 통한 생물학적 의미도 파악해본다.

클럽발 자료를 위한 함수적 군집 분석: 사례연구 (Functional clustering for clubfoot data: A case study)

  • 이미애;임요한;박천건;이경은
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권5호
    • /
    • pp.1069-1077
    • /
    • 2014
  • 클럽발은 발이 안쪽으로 굽어있는 상태로 태어나는 선천적인 발 기형의 일종이다. 본 연구에서는 한 쪽 클럽발 환자들의 수술 후 시간에 따른 양 쪽 발의 상대적인 차이 커브들을 군집분석 하려고 한다. 관측값들이 일정하지 않은 (irregular) 시점에서 희박하게 (sparsely) 관측되어서 일반적인 함수적 군집모형을 사용할 수 없어 James와 Sugar (2003) 가 제안한 희박한 자료의 함수적 군집 모형 (functional clustering model)을 이용하여 모수들을 추정하였다. 그리고 Sugar와 James (2003)의 왜곡함수 (distortion function)를 이용하여 군집의 수를 결정하여 군집분석하여 두 개의 군집을 발견하였다.

전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화 (Nonparametric clustering of functional time series electricity consumption data)

  • 김재희
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.149-160
    • /
    • 2019
  • 본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.

나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발 (Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data)

  • 김진욱;정충길;이지완;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF