• Title/Summary/Keyword: 모형기반 군집분석

Search Result 66, Processing Time 0.017 seconds

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

Comparison of clustering methods of microarray gene expression data (마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교)

  • Lim, Jin-Soo;Lim, Dong-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Cluster analysis has proven to be a useful tool for investigating the association structure among genes and samples in a microarray data set. We applied several cluster validation measures to evaluate the performance of clustering algorithms for analyzing microarray gene expression data, including hierarchical clustering, K-means, PAM, SOM and model-based clustering. The available validation measures fall into the three general categories of internal, stability and biological. The performance of clustering algorithms is evaluated using simulated and SRBCT microarray data. Our results from simulated data show that nearly every methods have good results with same result as the number of classes in the original data. For the SRBCT data the best choice for the number of clusters is less clear than the simulated data. It appeared that PAM, SOM, model-based method showed similar results to simulated data under Silhouette with of internal measure as well as PAM and model-based method under biological measure, while model-based clustering has the best value of stability measure.

A Comparison of Cluster Analyses and Clustering of Sensory Data on Hanwoo Bulls (군집분석 비교 및 한우 관능평가데이터 군집화)

  • Kim, Jae-Hee;Ko, Yoon-Sil
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.745-758
    • /
    • 2009
  • Cluster analysis is the automated search for groups of related observations in a data set. To group the observations into clusters many techniques has been proposed, and a variety measures aimed at validating the results of a cluster analysis have been suggested. In this paper, we compare complete linkage, Ward's method, K-means and model-based clustering and compute validity measures such as connectivity, Dunn Index and silhouette with simulated data from multivariate distributions. We also select a clustering algorithm and determine the number of clusters of Korean consumers based on Korean consumers' palatability scores for Hanwoo bull in BBQ cooking method.

Comparison of clustering with yeast microarray gene expression data (효모 마이크로어레이 유전자발현 데이터에 대한 군집화 비교)

  • Lee, Kyung-A;Kim, Jae-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.741-753
    • /
    • 2011
  • We accomplish clustering analyses for yeast cell cycle microarray expression data. We compare model-based clustering, K-means, PAM, SOM and hierarchical Ward method with yeast data. As the validity measure for clustering results, connectivity, Dunn Index and silhouette values are computed and compared.

Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model (정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.821-834
    • /
    • 2013
  • Law et al. (2004) proposed a normal distribution based salient mixture model for variable selection in clustering. However, this model has substantial problems such as the unidentifiability of components an the inaccurate selection of informative variables in the case of a small cluster size. We propose an alternative method to overcome problems and demonstrate a good performance through experiments on simulated data and real data.

Variable Selection in Normal Mixture Model Based Clustering under Heteroscedasticity (이분산 상황 하에서 정규혼합모형 기반 군집분석의 변수선택)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1213-1224
    • /
    • 2011
  • In high dimensionality where the number of variables are excessively larger than observations, it is required to remove the noninformative variables to cluster observations. Most model-based approaches for variable selection have been considered under the assumption of homoscedasticity and their models are mainly estimated by a penalized likelihood method. In this paper, a different approach is proposed to remove the noninformative variables effectively and to cluster based on the modified normal mixture model simultaneously. The validity of the model was provided and an EM algorithm was derived to estimate the parameters. Simulation studies and an experiment using real microarray dataset showed the effectiveness of the proposed method.

Gene Screening and Clustering of Yeast Microarray Gene Expression Data (효모 마이크로어레이 유전자 발현 데이터에 대한 유전자 선별 및 군집분석)

  • Lee, Kyung-A;Kim, Tae-Houn;Kim, Jae-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1077-1094
    • /
    • 2011
  • We accomplish clustering analyses for yeast cell cycle microarray expression data. To reflect the characteristics of a time-course data, we screen the genes using the test statistics with Fourier coefficients applying a FDR procedure. We compare the results done by model-based clustering, K-means, PAM, SOM, hierarchical Ward method and Fuzzy method with the yeast data. As the validity measure for clustering results, connectivity, Dunn index and silhouette values are computed and compared. A biological interpretation with GO analysis is also included.

Functional clustering for clubfoot data: A case study (클럽발 자료를 위한 함수적 군집 분석: 사례연구)

  • Lee, Miae;Lim, Johan;Park, Chungun;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1069-1077
    • /
    • 2014
  • A clubfoot is a kind of congenital deformity of foot, which is internally rotated at the ankle. In this paper, we are going to cluster the curves of relative differences between regular and operated feet. Since these curves are irregular and sparsely sampled, general clustering models could not be applied. So the clustering model for sparsely sampled functional data by James and Sugar (2003) are applied and parameters are estimated using EM algorithm. The number of clusters is determined by the distortion function (Sugar and James, 2003) and two clusters of the curves are found.

Nonparametric clustering of functional time series electricity consumption data (전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.149-160
    • /
    • 2019
  • The electricity consumption time series data of 'A' University from July 2016 to June 2017 is analyzed via nonparametric functional data clustering since the time series data can be regarded as realization of continuous functions with dependency structure. We use a Bouveyron and Jacques (Advances in Data Analysis and Classification, 5, 4, 281-300, 2011) method based on model-based functional clustering with an FEM algorithm that assumes a Gaussian distribution on functional principal components. Clusterwise analysis is provided with cluster mean functions, densities and cluster profiles.

Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data (나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF