This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).
Journal of the Korean Data and Information Science Society
/
v.23
no.1
/
pp.39-51
/
2012
Cluster analysis has proven to be a useful tool for investigating the association structure among genes and samples in a microarray data set. We applied several cluster validation measures to evaluate the performance of clustering algorithms for analyzing microarray gene expression data, including hierarchical clustering, K-means, PAM, SOM and model-based clustering. The available validation measures fall into the three general categories of internal, stability and biological. The performance of clustering algorithms is evaluated using simulated and SRBCT microarray data. Our results from simulated data show that nearly every methods have good results with same result as the number of classes in the original data. For the SRBCT data the best choice for the number of clusters is less clear than the simulated data. It appeared that PAM, SOM, model-based method showed similar results to simulated data under Silhouette with of internal measure as well as PAM and model-based method under biological measure, while model-based clustering has the best value of stability measure.
Cluster analysis is the automated search for groups of related observations in a data set. To group the observations into clusters many techniques has been proposed, and a variety measures aimed at validating the results of a cluster analysis have been suggested. In this paper, we compare complete linkage, Ward's method, K-means and model-based clustering and compute validity measures such as connectivity, Dunn Index and silhouette with simulated data from multivariate distributions. We also select a clustering algorithm and determine the number of clusters of Korean consumers based on Korean consumers' palatability scores for Hanwoo bull in BBQ cooking method.
Journal of the Korean Data and Information Science Society
/
v.22
no.4
/
pp.741-753
/
2011
We accomplish clustering analyses for yeast cell cycle microarray expression data. We compare model-based clustering, K-means, PAM, SOM and hierarchical Ward method with yeast data. As the validity measure for clustering results, connectivity, Dunn Index and silhouette values are computed and compared.
Law et al. (2004) proposed a normal distribution based salient mixture model for variable selection in clustering. However, this model has substantial problems such as the unidentifiability of components an the inaccurate selection of informative variables in the case of a small cluster size. We propose an alternative method to overcome problems and demonstrate a good performance through experiments on simulated data and real data.
In high dimensionality where the number of variables are excessively larger than observations, it is required to remove the noninformative variables to cluster observations. Most model-based approaches for variable selection have been considered under the assumption of homoscedasticity and their models are mainly estimated by a penalized likelihood method. In this paper, a different approach is proposed to remove the noninformative variables effectively and to cluster based on the modified normal mixture model simultaneously. The validity of the model was provided and an EM algorithm was derived to estimate the parameters. Simulation studies and an experiment using real microarray dataset showed the effectiveness of the proposed method.
We accomplish clustering analyses for yeast cell cycle microarray expression data. To reflect the characteristics of a time-course data, we screen the genes using the test statistics with Fourier coefficients applying a FDR procedure. We compare the results done by model-based clustering, K-means, PAM, SOM, hierarchical Ward method and Fuzzy method with the yeast data. As the validity measure for clustering results, connectivity, Dunn index and silhouette values are computed and compared. A biological interpretation with GO analysis is also included.
Journal of the Korean Data and Information Science Society
/
v.25
no.5
/
pp.1069-1077
/
2014
A clubfoot is a kind of congenital deformity of foot, which is internally rotated at the ankle. In this paper, we are going to cluster the curves of relative differences between regular and operated feet. Since these curves are irregular and sparsely sampled, general clustering models could not be applied. So the clustering model for sparsely sampled functional data by James and Sugar (2003) are applied and parameters are estimated using EM algorithm. The number of clusters is determined by the distortion function (Sugar and James, 2003) and two clusters of the curves are found.
The electricity consumption time series data of 'A' University from July 2016 to June 2017 is analyzed via nonparametric functional data clustering since the time series data can be regarded as realization of continuous functions with dependency structure. We use a Bouveyron and Jacques (Advances in Data Analysis and Classification, 5, 4, 281-300, 2011) method based on model-based functional clustering with an FEM algorithm that assumes a Gaussian distribution on functional principal components. Clusterwise analysis is provided with cluster mean functions, densities and cluster profiles.
Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.112-112
/
2018
최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.