• Title/Summary/Keyword: 모터속도

Search Result 691, Processing Time 0.03 seconds

An Analysis of Position Detection Error of Sensorless Controller and Modeling of Drive System for Interior Permanent Magnet BLDC Motors (영구자석 매입형 BLDC 전동기 센서리스 제어시스템의 위치검지 오차분석 및 모델링)

  • Lee, Dong-Myung;Kim, Hag-Wone;Cho, Kwan-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This paper proposes the modeling of sensorless drive system using 120 degree conduction method for IPM (Interior Permanent Magnet) BLDC motors and analyzes characteristics of the terminal voltage that is used to detect the rotor position. This paper shows that the ZCP (Zero-Crossing Point) of the measured terminal voltage used In sensorless control is ahead of that of the back EMF of IPM motors because they have a saliency. This research also analyzes that the amount of position detection error is related to saliency, rotor speed, and load condition. In addition, this paper shows that motors have bigger advance angles than we have expected because the ZCP of terminal voltage precedes the actual ZCP, and under operation conditions such as heavy load and high speed it may generate abnormal currents that flow toward opposite direction after phase current becomes zero.

Development of Solid/liquid Separation Technology for Stall Wastewater (畜舍尿汚水의 物理的 固液分離技術 開發)

  • 오인환;박정현;장동일
    • Journal of Animal Environmental Science
    • /
    • v.2 no.1
    • /
    • pp.79-86
    • /
    • 1996
  • Solid/Liquid(S/L) separation is crucial for biological treatment of animal wastewater. Liquid portion from S/L separation has less BOD-load and proper post-strip treatment can be obtained. Screen or declined sieve was normally used to separate the solid parts. For better separating efficiency a vibration and a cylindrical separator were constructed and tested. The results are summarized as follows; Solids removal efficiency and moisture content of separated solid were 15~26% and 85~88%, respectively for the vibration separator. for the cylindrical separator, solid removal efficiency and moisture content of solid were 16~39% and 86~89%, respectively. The greatest amount of drymatter was obtained when operating vibration separator with 10$^{\circ}$ inclination and 100% vibrating power. For the cylindrical separator maximum efficiency was obtained with 40 rpm and 19$^{\circ}$ inclination. The vibration and the cylindrical separator have shown 21% and 26% in BOD removal, respectively. These two types of separator were proved to be applicable methods for animal wastewater separation.

  • PDF

Development of Inverter Control System for Speed Control Punching Machine (펀칭머신의 속도제어를 위한 인버터 제어기 개발)

  • Cho, Hyun-Seob;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.628-631
    • /
    • 2008
  • A company needs to maintain its machines always workable in order to keep the manufacturing time minimal. If any troubles occur, they should be fixed as soon as possible. But, the complexity of modern machines make the trouble shooting difficult. So, it is important that the monitoring system for automated production system to fix every trobule easily. In this paper new, inverter control system for TG feedback a formula Control was developed. The motor control system with TG feedback controller as an effect of load disturbance, it is very difficult to guarantee the robustness of control system. The function of the implementation are 7G feedback type, and temperature scheme. The Inverter Control System approach is based on master-slave control concept. To show validity of the developed new inverter control system, severial experiments are illustrated.

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Sung-Yug;Kim, Dong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2010
  • A small unmanned aerial vehicle(UAV), which uses a propulsion system consisting of electric motor and battery, weighs less than 8 kg, capable of hand launch. Because it is easy to operate and able to transmit image information in real time, the use of small UAV has been increasing. However, very few analysis methods or analysis results on flight performance of the small UAV have been known so far. In this paper, the performance analysis methods of a small UAV, which is manufactured to study an electric powered UAV, are suggested and their results are achieved. Aerodynamic data of the vehicle are obtained by making use of gliding performance from actual flight test, and required thrust and required power by flight speed are predicted. In addition, the methods to predict range and endurance in case of using battery as power source are suggested and their results are achieved.

Measurement of Performance of High Speed Underwater Vehicle with Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.12-17
    • /
    • 2018
  • A natural cavitation-type high-speed underwater vehicle with solid rocket motor is tested, and its speed and running distance are measured. The outputs from pressure sensors on the surface of the vehicle reveal a pressure-time history reflecting the development of supercavitation. Underwater cameras installed on the wall of the test pool record the entire process from the onset of supercavitation to its full development. CNU-SuperCT, based on two-dimensional inviscid theoretical analysis, is used to simulate test results. Considering CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Additionally, pictures from underwater cameras support the test results.

Development of distance sensor module with object tracking function using radial arrangement of phototransistor for educational robot (교육용 로봇을 위한 포토트랜지스터의 방사형 배열을 이용한 물체추적기능을 갖는 거리 센서 모듈 개발)

  • Cho, Se-Hyoung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.922-932
    • /
    • 2018
  • Radial distance sensors are widely used for surveying and autonomous navigation. It is necessary to train the operation principle of these sensors and how to apply them. Although commercialization of radial distance sensor continues to be cost-effective through lower performance, but it is still expensive for educational purposes. In this paper, we propose a distance sensor module with object tracking using radial array of low cost phototransistor which can be used for educational robot. The proposed method is able to detect the position of a fast moving object immediately by arranging the phototransistor in the range of 180 degrees and improve the sensing angle range and track the object by the sensor rotation using the servo motor. The scan speed of the proposed sensor is 50~200 times faster than the commercial distance sensor, thus it can be applied to a high performance educational mobile robot with 1ms control loop.

Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft (항공기 플랩 제어를 위한 선형 구동기의 구조 안전성 평가)

  • Kim, Dong-Hyeop;Kim, Sang-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.66-73
    • /
    • 2019
  • The objective of this study was to evaluate the structural safety of the basic design for the linear actuator for the flap control of aircrafts. The kinetic behavior of the linear actuator was determined using the multi-body dynamics (MBD) analysis, and the contact force was calculated to be used as input data for the structural analysis based on the finite element analysis. In the structural analysis, the thermal and static behaviors of the linear actuator satisfying the designed velocity were examined, and the structural safety of the linear actuator evaluated. Moreover, the dynamic behaviors of the key components of the linear actuator were investigated by the modal analysis. The actuation rod linearly moved with about 5 mm/s when the motor operated at 225 rpm and the maximum contact force of 32.83 N occurred between two driving gears. Meanwhile, the structural analysis revealed that the maximum thermal and static stresses were 1.57% and 78% of the yield strength of steel, respectively, and they were in a safe range of the structure. In addition, the linear actuator for the basic design is stable to the resonance by avoiding the natural frequencies of the components.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

PLC and Arduino CNC Control for Comparison of 2D Outputs (2D 출력물 비교를 위한 PLC와 아두이노 CNC 제어)

  • Cho, Hae-Jun;Kim, Kang-Ho;Jang, Hyun-Su;Jeon, Jong-Hwan;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1295-1302
    • /
    • 2021
  • As the market size of 3D printers increases, the precision of the printout and the speed of operation by the motor are very important issues. In this parer, G-code of each output was generated using a CURA program to compare whether the output of the PLC equipment is the same as that of the Arduino CNC. And after conversion to NC File, a pen was attached to each device to output a result to A4 paper. As a result, the output time was measured to be 1m 39s for PLC equipment and 2m 5s for Arduino CNC. In addition, it was confirmed that the 2D output was equally from the two equipments.

Development of Automatic Shear-wave Source for Downhole Seismic Method (다운홀 탄성파 기법용 전단파 자동 가진원의 개발)

  • Bang, Eun-Seok;Sung, Nak-Hoon;Kim, Jung-Ho;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.27-37
    • /
    • 2007
  • Downhole seismic method is very economic and easy to operate because it uses only one borehole and simple surface source to obtain the shear wave velocity profile of a site. In this study, automatic shear wave source was developed for efficient downhole seismic testing. This source is motor-spring type and easy to control. It can lessen the labor of operator and the working time. Moreover, it can provide better and repetitive signals for data interpretation. By combining developed automatic source with automatic receiver system, PC based data acquisition system, advanced managing program, and semi-automatic downhole performing system were constructed. Through comparison test with manual source, advantages of automatic source were verified. Constructed semi-automatic downhole testing system including automatic shear wave source was applied to the soft soil site. The applicability and reliability were verified and the importance of automating testing system for obtaining reliable result was emphasized.