• Title/Summary/Keyword: 모의기반 산정기법

Search Result 101, Processing Time 0.041 seconds

Variability Analysis of Design Flood Considering Uncertainty of Rainfall-Runoff Model and Climate Change (기후변화 영향과 강우-유출 모형의 불확실성을 고려한 설계홍수량 변동성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.365-365
    • /
    • 2012
  • 이수 및 치수를 위한 수공구조물 설계 및 하천기본계획 수립의 요점은 설계홍수량의 산정에 있으며, 통계적으로 유의성을 가지는 설계홍수량을 산정하기 위해서는 일반적으로 30년 이상 관측된 홍수자료가 요구된다. 우리나라의 경우 대부분의 유역이 미계측 유역이거나 관측년수가 비교적 작은 경우가 많으므로, 상대적으로 자료 연한이 긴 강우자료를 빈도분석한 후 이를 강우-유출 모형에 입력하여 확률홍수량을 추정하는 간접적인 방법이 주로 이용되며 사용된 강우의 빈도가 홍수의 빈도와 동일하다는 가정을 기본으로 한다. 그러나 동일한 강우량이 발생하더라도 강우의 강도, 지속시간, 유역의 선행함수조건 등과 같은 유역 특성에 따라 유출의 특성은 현저히 다르게 나타나며 결국 이러한 특성은 입력자료, 강우-유출 모형, 기후변동성 등과 같은 불확실성 요소로 인식될 수 있다. 따라서 본 연구에서는 이러한 불확실성을 고려할 수 있는 강우-유출 모의기법을 개발하여 이를 통해 홍수빈도곡선을 유도할 수 있는 방법론을 제시하고자 한다. 불확실성 분석을 위해 기존 HEC-1 강우-유출 모형에서 Bayesian MCMC 기법을 적용하여 매개변수들의 사후분포를 추정하여 매개변수들의 최적화 및 불확실성 분석을 수행하였다. 마지막으로 기후변화 영향을 통합한 홍수빈도곡선을 유도하기 위해서 극치강수를 모의하는 것이 필요하며, 본 연구에서는 극치값 재현에 있어서 우수한 성능을 발휘하는 Kernel-Pareto Piecewise분포 기반의 강우모의발생 기법을 적용하여 HEC-1모형과 연동되도록 모형을 개발하였다. 본 연구에서 제안하는 방법론은 기존 홍수빈도곡선 유도 방법에서 불확실성을 분석하기 위해 모든 변수들을 독립사상으로 간주하고 Monte Carlo Simulation을 수행함으로서 매개변수들간의 상호연관성, 상관성, 조건부 확률들을 고려할 수 없었던 점을 Bayesian 모형을 통해 매개변수들간의 조건부 확률을 고려한 매개변수의 사후분포 도출을 가능하게 하여 보다 현실적인 강우-유출 관계 도출이 가능하고 불확실성 구간이 자연적으로 도출됨으로서 향후, 신뢰성 있는 수자원 계획수립에 유용한 자료로 활용이 가능할 것으로 판단된다.

  • PDF

Application of Nonstatinoary Regional Frequency Analysis Based on Population Index Flood Model (모분포 홍수지수모형을 이용한 비정상성 지역빈도해석 기법 적용)

  • Kim, Hanbeen;Lee, Joohyung;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.98-98
    • /
    • 2020
  • 모분포 홍수지수모형은 여러 관측지점의 수문자료를 활용하여 설계수문량을 산정하는 지역빈도해석을 위한 모형 중 하나이다. 기존의 홍수지수모형은 동질지역 내 각 지점의 표본통계량을 통해 표준화된 자료들을 기반으로 설계수문량을 산정하므로 왜곡이나 오차가 발생하는 반면, 모분포 홍수지수모형은 미지의 모분포에 대한 통계량으로 표준화한 설계수문량은 동질지역 내 모든 지점에 대해 동일하다는 가정을 기반으로 지역빈도해석을 수행하므로 보다 정확한 설계수문량 산정이 가능하다. 본 연구에서는 모분포 홍수지수모형에서의 미지의 모분포를 비정상성 GEV분포형으로 가정함으로써 각 지점의 비정상성을 고려한 설계수문량을 산정할 수 있는 비정상성 지역빈도해석 기법을 개발하고 그 적용성을 알아보고자 한다. 이를 위해 우리나라 전역에 분포된 10개의 강우관측 지점을 하나의 지역으로 구성하고 이질성척도를 통해 지역동질성을 확인하였다. 먼저, 각 지점의 모분포를 가정하기 위하여 각 지점의 연 최대치 강우자료에 대하여 Mann-Kendall test를 통해 경향성을 확인하였다. 경향성이 없는 지점의 경우 정상성 GEV분포형, 경향성이 나타나는 지점의 경우 다양한 형태의 비정상성 GEV분포형 중 Akaike information criterion을 통해 선정된 비정상성 GEV분포형을 모분포로 가정하고, 모분포 홍수지수모형을 적용하여 확률강우량을 산정하였다. 대상 지역에 대한 모의실험을 통해 비정상성을 고려한 모분포 홍수지수모형의 성능을 지점빈도해석 및 기존의 홍수지수모형과 비교하였으며, 정상성 지역빈도해석 대비 비정상성 지역빈도해석을 통해 산정된 확률강우량의 비교를 통해 그 적용성을 평가하였다.

  • PDF

Analysis of Difference in extreme rainfall according to bias-correction method on KMA national standard scenarios (기상청 국가표준시나리오의 편의보정방법에 따른 극한강우량의 차이 분석)

  • Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.195-195
    • /
    • 2018
  • 기상청에서는 영국 전지구기후모델인 HadGEM2-AO 기반의 영국 지역기후모델 HadGEM3-RA로부터 생산된 기후변화 시나리오를 기후변화예측을 위한 국가표준시나리오 자료로 제공하고 있다. 하지만, 기후모델의 특성상, 관측자료와 모의자료 간에는 통계적인 차이가 존재하며, 이러한 차이를 무시하고 원자료를 그대로 분석에 사용하는 것은 무의미 하다. 따라서 이러한 보정하기 위해서 주로 Quantile Mapping, Quantile Delta Mapping, Detrended Quantile Mapping 방법이 주로 사용된다. 하지만 어떠한 편의보정 방법이든 극값이 다수 존재하는 미래기간 모의자료를 보정할 때에는 외삽법(extrapolation)의 적용이 필요하다. 외삽법의 경우 constant correction 방법이 주로 적용된다. 본 연구에서는 기상청의 국가표준시나리오를 대상으로 이러한 편의보정 방법의 적용에 따른 미래 극한강우량의 차이를 분석하고자 하였다. 우선, 모의자료에서 우리나라 주요 기상관측지점에 해당하는 격자로부터 강우량자료를 추출하고 연최대강우시계열을 산정하였다. 그 후, 위의 세 가지 편의보정 방법을 이용하여 강우자료의 편의보정을 수행하였으며, constant correction 방법을 적용하여 이상치를 보정하였다. 그 후, 보정된 미래기간 모의자료의 추세를 분석하고, 이를 미래 확률강우량 산정방법인 scale-invariance 기법에 적용하여 미래 확률강우량을 산정하였다. 그 결과, 외삽법의 적용에 따라 편의보정 방법에 따라 미래 자료의 추세 또는 확률강우량의 변화패턴은 큰 차이를 나타내지 않았지만, 그 값 자체는 다소 차이가 있는 것으로 나타났다. 이러한 차이는 사용된 GCM과 RCM 조합으로 인한 오차와 더해져, 미래 예측결과의 불확실성으로 나타나기에 미래 극한강우량 예측을 위해서는 다수의 GCM, RCM 조합뿐만 아니라 다수의 편의보정 방법에 따른 결과도 함께 고려(ensemble)하여 결과를 나타내는 것이 필요할 것으로 판단된다.

  • PDF

Continuous Rainfall-Runpff Simulation Analysis of Jeongjacheon watershed using GIS-based HEC-HMS Model (GIS 기반의 HEC-HMS를 이용한 정자천 유역의 연속 강우.유출 분석)

  • Kim, Yong-Kuk;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.997-1001
    • /
    • 2009
  • GIS 기반의 HEC-HMS를 이용하여 유량자료가 있는 소하천인 정자천 유역을 대상으로 장기 강우 유출 분석을 하였다. 일반적으로 홍수량 산정은 단기해석으로 분석하나 평 갈수기와 홍수기 때의 하천 유황이 다르기 때문에 매개변수가 불일치할 것이라 생각되고, 이에 대한 보정이 필요한지 판단이 필요하다. 이를 위해 장기 연속모의를 통하여 매개변수의 보정 필요성을 검토하였다. 연구는 수치지도를 조합하여 ARC-VIEW로부터 Map파일 및 Basin파일을 생성하였고, 토지이용도와 토양도를 ARC-VIEW를 이용하여 CN value를 추출하였다. 계산조건중 손실량 산정방법은 SCS Curve Number법으로 하였고, 단위도 방법은 Clark UH법, 하도추적방법은 Muskingum방법, 기저유량산정방법은 Constant monthly로 설정하였다. 유역면적, 도달시간자료, 저류상수 값 등의 추출은 GIS기법을 이용하여 추출하였다. HEC-HMS의 장기 연속모의(Continuous Simulation)로 얻어진 Element Graph를 보면 대략적인 형태가 일치하나 2006년도에 대한 모의에서는 홍수기의 결과만 일치하는 것으로 보이고, 2007년도에 대한 모의에서는 평 갈수기와 홍수기의 그래프 형태가 유사하게 나타났다. 실측 유량보다 유량 값이 약간 크게 산출되어 홍수량 산정에서 볼 때 안정성에 무리가 없다고 판단되지만, 평 갈수기 기간에서 볼 때 연마다 하천의 매개변수가 일치하지 않는다고 생각되며, 홍수 후 유역의 변화로 매개변수가 변화한 것이라 생각된다. 향후 정자천유역의 보다 많은 강우사상과 실측유량을 통해 HEC-HMS의 유출량을 비교 분석하면 보다 더 정확한 해석이 가능할 것이며, 홍수가 빈번한 지역의 경우 유수지의 검토와 저수지의 시간당 방류량을 알 수 있다면 오차의 범위를 줄일 수 있다고 생각된다. 더 나아가 우리나라에 적합한 매개변수와 GIS 프로그램이 개발된다면 보다 쉽고 정확한 해석이 가능할 것이라고 생각된다.

  • PDF

Development of SWMM LID auto-calibration tool (SWMM LID 자동 보정 tool 개발)

  • Ryu, Ji-Chul;Kang, Hyun-Woo;Choi, Jae-Wan;Kong, Dong-Soo;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.539-539
    • /
    • 2012
  • 최근 미국 환경부에서는 국가 환경 정책으로써 LID(Low Impact Development)를 대안 책으로 제시하고 있으며 우리나라에서도 최근 LID기법 연구가 활발히 진행 되고 있다. LID란 기존의 집중식 BMP처럼 유출 발생 후 처리를 다루는 방식의 기법이 아닌 발생원 단계에서의 처리에 초점을 맞춘 기법이다. 환경적 측면에서 다양한 기능을 가능하게 할 수 있는 LID기법 적용에 따른 효과를 알아보기 위해 전 세계적으로 SWMM 모형이 많이 사용되고 있지만 SWMM 모형 내 유량 및 수질에 따른 자동 보정 툴이 존재하지 않고 유역에 적합한 최적의 LID 기법 구조물의 설계 기준을 정할 수 있는 툴이 존재하지 않기 때문에 보다 효율적인 유역의 수문 보정 및 LID 기법 적용에 따른 효과 모의를 제공하지 못한다. 따라서 본 연구에서는 SWMM 5.0 버전 내 SWMM LID auto-calibration tool을 PARASOL 알고리즘을 기반으로 개발하였다. 또한 개발된 PARASOL 알고리즘 기반 SWMM LID auto-calibration tool을 이용하여 경기도 경안천 유역에 적용하였고 2011년 일별 실측 수문자료와 비교 분석 하였으며 경기도 경안천 유역에 맞는 최적의 LID기법을 산정하였다. 본 연구에서 개발 된 SWMM auto-calibration tool은 SWMM 모형의 유량 및 수질을 자동으로 보정하기 때문에 보다 효율적인 모형의 보정을 사용자에게 제공해 줄 수 있을 것이며 유역에 적합한 최적의 LID 기법 구조물 설계를 제시해 줄 수 있기 때문에 향후 LID 기법을 이용한 도시개발 계획에 유용하게 사용될 수 있을 것으로 판단된다. 향후 PARASOL 알고리즘 뿐만이 아닌 GLUE, SUFI-2, GA 등 다양한 알고리즘이 추가된 SWMM LID auto-calibration tool 을 개발 중에 있다.

  • PDF

Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors (유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측)

  • Jeong, Minyeob;Kim, Dae-Hong;Kim, Seokgyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

A Non-stationary frequency analysis for annual daily maximum rainfalls(ADMRs) using mixed Gumbel distribution of bayesian approach (Bayesian 기법의 혼합 Gumbel 분포를 활용한 연최대일강우량에 대한 비정상성 빈도해석)

  • Choi, Hong-Geun;Yoo, Min-Seok;Han, Young-Cheon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.312-312
    • /
    • 2018
  • 우리나라의 기후 지형적 특성에 따라 연강수량의 50% 이상이 여름철에 내리며 이러한 짧은 기간에 집중적으로 내리는 강수패턴 조건하에서 수공구조물 설계시 대부분 극치빈도분석을 활용한다. 우리나라의 경우 단일 Gumbel 분포를 활용한 극치빈도분석을 많이 이용한다. 하지만, 최근 이상기후로 인하여 전세계적으로 강수패턴의 특징이 급격히 변하고 있으며, 우리나라의 강수패턴 또한 바뀌어가고 있다. 연강수량의 대부분은 태풍과 장마로 인한 강수량으로 이루어져 있고, 일반적으로 두 개의 모집단으로 이루어진 형태를 보인다. 앞선 연구에서 두 개 이상의 첨두를 가지는 형태의 연최대강수량 자료에 대해 8개의 지속시간별(1, 2, 3, 6, 9, 12, 18, 24hr)로 Bayesian 기법의 단일 Gumbel 분포형과 혼합 Gumbel분포형 기반의 극치빈도분석 결과를 비교하였고, 혼합 Gumbel 분포형이 이중첨두 부분의 거동을 효과적으로 모의하는 것을 확인하였다. 본 연구에서는 이상기후로 인한 강수량의 특징의 급격한 변화에 일정한 패턴이 있음을 가정하고 이중첨두의 연 최대일강수량 자료에 대해 혼합 Gumbel 분포형 기반 비정상성 빈도분석을 실시하였다. 정상성 빈도분석과의 비교를 위해 확률분포의 매개변수 산정시 우도함수를 Bayesian 기법을 통해 산정하여 각 분포형의 Bayesian information criterion(BIC) 값을 비교하였다. 비정상성일 경우의 BIC 값이 정상성일 경우 보다 작게 산정되었고, 강수패턴이 경향성을 가지는 것으로 판단할 수 있었다. 비정상성 혼합 Gumbel 분포형 모델은 최근 급격한 강수패턴의 변화에 대한 대응책으로서 활용성이 높을 것으로 기대된다.

  • PDF

A study on the simulation of flooding in Top-down construction site considering extreme rainfall (극한강우를 고려한 Top-down 현장 침수모의에 관한 연구)

  • Im, JangHyuk;Cho, HyeRin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.30-30
    • /
    • 2022
  • 최근 기후변화로 인한 국지성 호우 빈도 및 강수량이 급증하는 등 극한강우 발생 가능성이 높아지고 있는 실정이다. 공공 기반의 유역 및 지자체별 침수 대응은 지속적으로 이루어지고 있으나, 건설 현장 대응은 이에 비해 미흡한 실정이다. 특히, 건설 현장의 경우, 예측할 수 없는 홍수 유출에 대해서도 기존 설계시 반영된 홍수 유출량과 기상청 정보에만 의존하고 있어 극한강우 발생시 취약성을 나타낼 수 있다. 특히, Top-down 현장은 개구부, 표면 작업을 위한 포장 등에 의해 지하부로 유입되는 강우량이 많고, 지하 굴착공사시 단차 및 지하수 발생으로 극한강우시 침수에 의한 수재해 발생 확률이 높다. 이를 대비하기 위해 XP-SWMM 모형을 이용하여 지상부와 지하부의 강우-유출량을 산정하고 지하부 침수를 모의하였다. 실제 Top-down 현장조사를 통해 침수 관련 인자와 XP-SWMM을 연계하여 침수모의 기법에 적용하였다. 관련 주요인자는 강우량, 현장 지상부 면적, 지상부 배수로, 지하 유입부, 지하 배수펌프 등으로 현장 조사결과 나타났다. 강우자료의 경우, 극한강우를 고려하기 위해 현장 지역의 최대 강우량, 태풍 루사와 기상청 강우의 증가 시나리오를 고려하여 모의에 적용하였다. 본 연구에서는 극한강우에 대한 Top-down 침수 모의를 수행할 수 있는 상용 모델링과 이와연관된 인자를 도출하여 침수 모의 기법을 최적화 하였다. 이러한 침수 모의를 통해 Top-Down 현장 침수심 등을 예측할 수 있다. 향후 이를 통해 지하공간이 있는 건설현장의 강우-유출 현상및 침수 모의가 가능하고, 실시간 현장별 침수 예측 모델 개발로 현장별 대피경로 및 대응방안을 제시하여 인적 피해를 최소화할 수 있을 것으로 기대할 수 있다.

  • PDF

Estimation of Precipitation Correction Factor and Flood Runoff Analysis of Urban Stream using Distributed Model and the Radar Image (레이더 영상과 분포형 모형을 활용한 도심하천의 홍수유출해석 및 강우보정계수 산정)

  • Kang, Bo-Seong;Yang, Sung-Kee;Jung, Woo-Yeol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.544-544
    • /
    • 2016
  • 최근 지구온난화 등 기후변화에 따른 돌발 홍수가 계절과 관계없이 빈번하게 발생하고 있으며, 국지성 호우 및 태풍의 영향으로 인한 홍수피해가 매년 발생하고 있다. 이와 같은 피해를 저감하기 위해서는 정확한 강우 관측 및 홍수량 산정이 매우 중요하기 때문에 많은 수문학적 연구와 기술 발달이 이루어지고 있다. 그 중 강우의 변화를 실시간으로 관측 가능한 레이더영상 자료의 활용성이 증대되어 활발한 연구가 진행되고 있으나, 제주도의 경우 다른 지역에 비해 연구가 미흡한 실정이다. 이에 따라, 제주도 유역을 대상으로 유역의 공간적 특성을 격자기반으로 분석하고 매개변수 산정 시 경험적 요인을 제거할 수 있는 분포형 모형인 Vflo와 기상청에서 제공하는 레이더 영상자료 및 강우자료를 활용하여 연구를 수행하였다. 본 연구에서는 Arc-GIS를 이용하여 제주도 도심하천인 외도천 유역의 지형적 지리적 특성(DEM, 토양도, 토지피복도 등)을 $30m{\times}30m$ 격자크기로 분석하고, 레이더영상 자료로부터 강우 자료를 추출하였으며, 분포형 모형(Vflo)을 활용하여 유출량을 모의하였다. FSIV기법을 통해 현장 관측한 유출량과 비교 분석하였으며, 레이더 영상자료로부터 추출한 강우자료는 AWS자료를 활용하여 제주도에 적합한 강우보정계수를 산정하였다. 이와 같은 연구를 통해 향후 제주도 미계측 유역의 홍수량 산정이 가능할 것으로 판단되며, 하천기본계획 및 유역종합치수계획 등 치수계획 수립 시 많은 활용이 될 것으로 기대한다.

  • PDF

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.