본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.
가상환경에서 다양한 객체 요소들이 휴먼 캐릭터와 서로 상호작용을 한다. 이것은 휴먼 모션 애니메이션에 영향을 준다. 기본모션데이터는 동적, 고정된 객체의 접촉 상태, 지면과의 관계에 따라 영향을 받는다. 모션이 적절히 수정되지 않으면 불규칙, 비합리적인 표현이 생성될수 있다. 본 논문은 모션 데이터 커브를 추적하고 적절히 장애물 객체의 속성을 포함하는 관절데이터를 추적한다. 상호작용의 결과에 적절히 응답하여 데이터를 수정한다. 본 논문은 애니메이션 시나리오상에서 상호작용하는 객체를 위한 동적 제어 메커니즘을 설계하는 기법을 제시한다. 특정한 규칙을 이용하여 의사 결정할 수 있는 지능형 에이젼트에 기반한 구조로 에이젼트 시스템을 제안한다.
최근 3D 애니메이션 , 영화 특수효과 그리고 게임제작시 모션 캡처 시스템(Motion Capture System)을 통하여 실제 인간의 동작 및 표정을 수치적으로 측정해내어 이를 실제 애니메이션에 직접 사용함으로써 막대한 작업시간 및 인력 드리고 자본을 획기적으로 줄이고 있다. 그러나 기존의 모션 캡처 시스템은 고속 카메라를 이용함으로써 가격이 고가이고 움직임 추적에서도 여러 가지 문제점을 가지고 있다. 본 논문에서는 일반 저가의 카메라와 신경회로망 및 영상처리를 이용하여 얼굴 애니메이션용 모션 캡처 시스템에 적용할 수 있는 경제적이고 효율적인 얼굴 움직임 추적 기법을 제안한다.
본 논문은 HD 해상도의 고화질 방송카메라(회전과 줌이 가능한)와 '키넥트' 같은 범용 모션인식 카메라를 연동하여 방송용 모션기반 증강현실 어플리케이션을 구현하기 위해서, 연기자의 위치를 가상 월드 좌표로 자동 변환시키는 방법을 제안한다. 방송환경에서 키넥트와 같은 모션인식카메라(RGB-D 카메라)를 사용하기 위해서는 거리와 조명의 영향을 많이 받아 연기자와 가까운 천장이나 카메라 밑처럼 그 설치 위치가 제약되곤 한다. 이때, 연기자와 그래픽의 정확한 합성을 위해, 모션인식 카메라로부터의 연기자 추적 정보를 월드 좌표계로 변환해야 하며, 이것을 수작업으로 하기에는 변환의 정확도가 많이 떨어지고 시간도 많이 소요된다. 본 논문에서는 체크박스 패턴 기반의 스테레오 카메라보정 알고리즘을 사용하여 모션인식카메라와 방송용 카메라간의 상관관계(이동, 회전)를 찾고, 이 값과 월드 좌표계 상의 방송 카메라(하드웨어 센서에 의해서 추적됨)정보(이동, 회전)를 이용하여 임의 위치에 설치한 모션인식 카메라로부터 추적된 연기자 위치정보를 월드 좌표계 상의 위치 값으로 자동 변환시키는 방법을 제안한다.
물체 추적시스템은 비디오 감시 시스템, 화상회의 시스템과 같은 다양한 비전 응용 분야에서 점점 비중이 높아지고 있다. 이 시스템에서 가장 널리 사용되고 있는 방법 중 하나로 Particle-Filter를 들 수 있다. 하지만, 이 Particle-Filter의 단점은 유사한 여러 물체를 추적할 때에 그 물체들이 겹치거나 사라질 경우 정확한 추적을 하기 어렵다는 것이다. 이 단점을 극복하기 위해 많은 연구가 진행되고 있으며, 본 논문에서는 이 문제를 극복하기 위한 새로운 방법을 제안하고자 한다. 다중 물체 추적에서 빈번히 일어나는 문제는 두 가지로 요약할 수 있는데, 동일한 다중 물체가 부분적으로 엇갈리거나 다른 객체에 완전히 겹친 후 떨어질 때 한 물체를 중복하여 추적하는 문제(merge and split problem)와 이 때 분리되어 추적은 됐지만, 물체를 혼동하여 추적하는 문제(Labeling problem)이다. 본 논문에서는 이 러한 문제들을 풀기 위해 이미지 필드에서 보다 정확한 확률분포를 만들고, 이 확률분포의 신뢰성을 높이기 위해서 물체의 특징정보를 표현하는 몇 가지 방법을 제안한다. 전자의 문제는 두 가지 문제로 나누어 생각해 보았다. 첫째, 복잡환 환경에서의 분포를 찾아내는 것과 둘째, 추적 중인 물체를 잃어버릴 경우 새로운 샘플을 생성함으로써 나누어 보았다. 이 문제 중 첫번째는 K-means 클러스터링을 이용하여 유사한 물체가 주변에 퍼져 있을 때, 하나의 후보 위치가 아닌, K개의 후보 위치들을 만들어 내어 보다 정확한 추적이 가능하게 하였으며, 두 번째 문제는 추적 중인 물체가 다른 커다란 물체에 가려질 경우이다. 이 상황에서 샘플을 생성하는 방법은 지금까지 해왔던 간단한 환경에서의 생성 범위와는 다르게 넓게 해야 생성시켜야 한다. 이 때 샘플링의 수를 늘리지 않으면서, 최대한 정확하게 추적하기 위해서 동영상에서 물체의 모션을 이용한 모션 히스토그램을 얻어내고, 그 정보를 이용하여 샘플을 생성하는 위치를 조절함으로써 이 문제를 풀어 보았다. 그리고, 후자의 문제인 이미지 필드상에서 확률분포의 신뢰성을 높이기 위한 특징 정보는 기존에 많이 사용하던 칼라 히스토그램에 공간정보의 의미를 부여하는 칼라 히스토그램을 분할하는 방법과 SIFT에서 사용하는 방향정보와 크기정보를 사용했다. 이것들을 사용하여 보다 정확한 물체추적시스템을 다음과 같이 제안한다.
본 논문에서는 물체가 서로 겹쳤다가 분리되는 상황하에서도 이동물체를 견고히 추적할 수 있는 모션에너지와 예측에 기반한 이동물체 추적 방법을 제안한다. 이동물체 추적은 이동물체의 추적 단계와 추적된 이동물체의 추적 단계로 나뉘는데 이동물체 추적을 위해서는 개선된 모션에너지 방법을 사용하였다. 이동물체 추적을 위해서는 이동물체 중심점의 이동위치를 거리와 방향정보를 이용, 예측함으로써 탐색공간을 줄여 실시간 추적이 가능하도록 하였다. 실험실에서 만든 모사 영상열과 실세계 영상열에 적용한 결과 겹침(occlusion)과 나타남(disocclusion)이 발생하는 경우에도 추적이 잘 이루어짐을 볼 수 있었다.
본 논문은 비정형 객체를 추적함에 있어서 다른 객체와 겹쳐진 후 계속 추적할 수 있는 방법으로 지역 정보와 객체의 모션 템플리트 그리고 색 정보를 계층적으로 사용하는 방안을 제안한다. 기본적으로 색 정보 기반의 CAMshift 알고리즘을 바탕으로 각 프레임마다 color template를 업데이트하여 현재의 객체와 template를 비교하고, 업데이트 된 color template를 바탕으로 색 분포를 사용하여 CAMshift 결과를 비교하여 추적하는 물체를 보다 정확하게 판별할 수 있도록 한다. 지역정보, 컬러 정보, 모션 템플리트 정보를 융합한 객체추적은 기존의 객체추적 방법의 장점을 모두 유지하면서 추적하는 객체를 보다 정확하게 인식할 수 있다. 이러한 성능 향상은 기존의 객체추적 시스템에 추가하기도 용이 할 백만 아니라 감시시스템 및 객체 추적 시스템의 연구에서 정확성의 향상에 기여할 것으로 기대된다.
본 논문에서는 투영된 모션과 히스토그램 인터섹션을 이용한 노이즈에 강건한 물체추적 방법을 제안한다. 기존의 방법은 템플릿 매칭, 물체의 경계선 재 검출, 물체의 움직임 정보 등을 사용하여 물체추적을 하였으나, 템플릿 매칭의 경우 많은 계산 시간을 요구하며 경계선을 재 검출하는 경우 윤곽선이 잘못 설정되는 경우가 있고 물체의 움직임 정보를 사용하는 경우에는 움직이는 카메라에서 움직이는 물체만을 추적하기가 쉽지 않은 단점이 있다. 본 논문에서는 투영된 모션과 질의 영상의 템플릿 마스크를 사용하여 물체의 이동, 회전과 스케일을 고려한 노이즈에 강건한 물체추적 기법을 제안한다. 질의영상은 영상분할 후 영역선택을 통하여 구성하고 물체의 인식은 색상을 이용한 히스토그램 인터섹션 기법을 사용한다. 물체의 이동은 가로 및 세로의 밝기 값을 1차원 신호로 투영하여 개략적인 움직임을 감지하고 이동에 대한 에러를 보정하며 회전과 스케일의 변화는 질의 영상의 템플릿 마스크를 이동하여 회전과 스케일에 맞게 변경하여 감지한다
본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.
얼굴 표정을 애니메이션하는 것은 얼굴 구조의 복잡성과 얼굴 표면의 섬세한 움직임으로 인해 컴퓨터 애니메이션 분야에서 가장 어려운 분야로 인식되고 있다. 최근 3D 애니메이션, 영화 특수효과 그리고 게임 제작시 모션 캡처 시스템(Motion Capture System)을 통하여 실제 인간의 동작 및 얼굴 표정을 수치적으로 측정해내어 이를 실제 애니메이션에 직접 사용함으로써 막대한 작업시간 및 인력 그리고 자본을 획기적으로 줄이고 있다. 그러나 기존의 모션 캡처 시스템은 고속 카메라를 이용함으로써 가격이 고가이고 움직임 추적에서도 여러 가지 문제점을 가지고 있다. 본 논문에서는 일반 저가의 카메라와 신경회로망 및 영상처리기법을 이용하여 얼굴 애니메이션용 모션 캡처 시스템에 적응할 수 있는 경제적이고 효율적인 얼굴 움직임 추적기법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.