• Title/Summary/Keyword: 모세관 한계

Search Result 23, Processing Time 0.024 seconds

Separation and Determination of Co(II) and Ni(II) Ion as their 4-(2-Pyridylazo) resorcinol Chelates by Reversed-Phase Capillary High-Performance Liquid Chromatography (역상 모세관-고성능 액체 크로마토그래피에 의한 코발트와 니켈 이온의 4-(2-피리딜아조)레조루신올 킬레이트로서의 분리 및 정량)

  • Chung, Yong-Soon;Chung, Won-Seog
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.547-552
    • /
    • 2003
  • Separation and determinations of Co(II) and Ni(II) ions as their 4-(2-pyridylazo)resorcinol(PAR) chelates by reversed-phase capillary high-performance liquid chromatography(RP-CpHPLC) were performed. Among many capillary columns, Vydac C4 column was selected and acetonitrile solution was used as mobile phase. The effect of pH and MeCN concentration(%) on the retention factor, k and peak intensity was examined and discussed. As a results, it was found that 22.5% MeCN and pH 5.60 was adequate as mobile phase for the separation of the two metal ions and determination of Co(II) ion, but the mobile phase condition for Ni(II) ion determination was 22.5% MeCN of pH 7.20. Detection limit(D.L., S/N=3) of Co(II) and Ni(II) ions were $2.0{\times}10{-7}$ M(14.9 ppb) and $1.0{\times}10{-6}$ M(59.2 ppb), respectively.

Theoretical Analysis of Heat Transportation Limitation by Porosity of Wick in Screen Mesh Wick Heat Pipe (스크린메쉬윅 히트파이프에서 윅의 기공율변화에 따른 열수송한계의 이론적 고찰)

  • Lee, Ki-Woo;Park, Ki-Ho;Chun, Won-Pyo;Lee, Wook-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1-6
    • /
    • 2003
  • The purpose of the present study is to investigate the capillary heat transportation limitation in heat pipe according to the change of screen mesh wick porosity. Diameter of pipe was 6 mm, and mesh numbers are 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of wick porosity and mesh number, the capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, and capillary heat transportation limitation are analyzed by theoretical design method of a heat pipe. As some results, the capillary heat transportation limitation in screen mesh wick heat pipe is largely affected by wick porosity and mesh number.

  • PDF

Analysis of the Anionic Surfactants by Capillary Electrophoresis (모세관 전기영동 장치를 이용한 음이온계 계면활성제의 분석)

  • Jeong, Hyuk;Kim, Seung Sun;Lee, Byung Min;Kang, Ho-Cheol;Lee, Won;Kim, Hai-Dong
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.435-440
    • /
    • 1994
  • Qualitative and quantitative analysis for the anionic surfactants used in the metal washing fluid (brand names are BFA and BCA) was performed by the capillary electrophoresis. Acetonitrile and sodium benzoate were mixed with the buffer solution which controlled at pH 10. Under the 18kV applied voltage, the electropherograms have shown the theoretical plates more than $10^4$. Determined as the concentration at the S/N~3, the typical detection limit was ~5 ppm and the calibration curves have shown the correlation coefficients higher than ~0.99. Based on these results, it was concluded that each components were octanoate, decanoate, dodecanoate, tetradecanoate, hexadecanoate and the relative ratio was 1.0 : 1.0 : 6.5 : 2.1 : 0.8 for the BFA.

  • PDF

A Study on a Sintered Metal Wick Heat Pipe;Manufacturing and Inspection (소결윜 히트파이프에 관한 연구;제작과 검증)

  • Kim, Sung-Dae;Kang, Hwan-Kook;Sung, Byung-Ho;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1487-1492
    • /
    • 2004
  • For the present study, three heat pipes with different thickness of sintered metal wick were manufactured, and their operational performances, such as capillary limit and thermal resistance were tested and compared with theoretical predictions. Experimental results showed good agreement with those by the theoretical model, and that seemed to present that the sintering process we had developed in the present study was valid.

  • PDF

A Study on the Simultaneous Analysis of Regulated Pesticides Residues from Rice and Soy Bean (쌀과 콩 중 규제잔류 농약의 동시분석에 관한 연구)

  • Taek-Jae Kim;Yun-Woo Eo;Jae-Seong Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.560-568
    • /
    • 1991
  • The simultaneous determination method which simply determined regulated pesticides was investigated. Sample was extracted with acetone-methanol and partitioned with methylene chloride after addition of saturated NaCl solution. Entract was purified by Bio-Beads S-X3 column using cyclohexane-methylene chloride (1 : 1) as eluate. The determination of pesticides was performed by BP-1 capillary column gas chromatography using ECD and NPD. The average recoveries of pesticides in rice and soy fbean were over 83% and 81%, respectively. It was possible to detect pesticides in rice up to 0.002 ppm by $\alpha-BHC$ and up to 0.05 ppm by carbaryl and in soy bean up to 0.01 ppm by ${\alpha}$-BHC and up to 0.3 ppm by carbaryl.

  • PDF

Simultaneous Determination of Berberine, Cinnamic Acid and Glycyrrhizin in Pharmaceutical Formulations by Capillary Electrophoresis with Diode-Array Detection (모세관 전기이동법에 의한 생약제제중 베르베린, 계피산 및 글리시리진의 동시 정량)

  • Kang, Seong Ho;Chung, Wha Jin;Yoon, Hyung Jung;Chung, Doo Soo
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.98-104
    • /
    • 1997
  • A simple, accurate and reproducible capillary electrophoresis(CE) assay has been developed for the determination of berberine, cinnamic acid, and glycyrrhizin which are used in traditional Korean medicinal preparations. Separation of these compounds was performed in 20 mM phosphate buffer(pH 7.5) and acetonitrile(75:25, v/v) using a bare fused silica capillary($57 cm{\times}75 {\mu}m$ i.d.) at 25$^{\circ}C$. With the electric field of 350 V/cm, the time needed for the separation of berberine, cinnamic acid and glycyrrhizin was within 13 min. Calibration curves were linear for 1∼100 ${\mu}g/mL$ berberine, 0.3∼100 ${\mu}g/mL$ cinnamic acid and 2.5∼100 ${\mu}g/mL$ glycyrrhizin. The ranges of relative standard deviations(n=5) for those samples were between 0.96∼2.35%. The limits of detection(S/N=3) for berberine, cinnamic acid and glycyrrhizin were 0.5, 0.1 and 2.0 ${\mu}g/mL$, respectively. The numbers of theoretical plates were 181,000(berberine), 88,000(cinnamic acid) and 169,000(glycyrrhizin), while they were 3,100∼4,800 in HPLC.

  • PDF

Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe (스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석)

  • 이기우;노승용;박기호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

Analysis for Thermal Performance of Axially Grooved Heat Pipe for Solar Collector (그루브형 태양열 집열용 히트파이프의 열성능 해석)

  • Hong, J.K.;Suh, J.S.;Byon, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2123-2128
    • /
    • 2004
  • In this study, analysis is made for the effects of groove shape on the thermal performance of a axial groove heat pipe. The mathematical models of two-phase flow in grooved heat pipe are presented for the capillary limitation in steady state. Generally, the heat pipe performance depends on the capillary pressure and liquid flow. The friction force of liquid flow through the groove increases with the groove width decreased, and then the capillary pressure is improved in the gas-liquid interface of groove. Therefore, the optimal groove width shaper exists for the maximum thermal performance of heat pipe. In this paper, the optimal groove shape and scale are presented by considering both capillary pressure and liquid flow.

  • PDF

Experimental Study of Thermal Performance of Heat Pipe with Axial Trapezoidal Grooves (축방향 사다리꼴 그루브 히트파이프의 열성능에 대한 실험적 연구)

  • Suh, Jeong-Se;Lee, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2003
  • Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves. 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations fur heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases. the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment.

Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector (태양열 집열기용 히트파이프의 열전달 특성에 대한 해석)

  • Chung, Kyung-Taek;Bae, Chan-Hyo;Suh, Jeong-Se;Kim, Byeong-Gi
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF