• Title/Summary/Keyword: 모멘트 접합부

Search Result 274, Processing Time 0.026 seconds

The Stability of Steel Unbraced Frames Considering Nonlinear Behavior of Connections (접합부 비선형 거동을 고려한 강구조 비가새 골조의 안정성)

  • Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.469-479
    • /
    • 2005
  • The nonlinear behavior of a connection has an influence on the behavior (the $P-\Delta$ effect) and the stability of a steel unbraced frame when a semi-rigid connection is applied as a beam-to-column connection. Therefore, the effects of a connection's non-linear behavior on the behavior and stability of a steel unbraced frame were investigated using second-order inelastic analysis, after which the main influence factors and their behavioral tendencies were studied. The study results showed that the nonlinear behavior of a connection directly affects the stability of a steel unbraced frame, and that the main influence factors are the rotational stiffness of the connection and the location of a semi-rigid connection.

Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses (잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가)

  • Lee, Soo-Keuon;Yang, Jae-Guen;Kang, Ji-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • Residual stress is defined as stress that already exists on a structural member from the effects of welding and plastic deformation before the application of loading. Due to such residual stress, welded H-section compression members under centroidal compression load can undergo buckling and failure for strength values smaller than the predicted buckling load and specified compressive strength. Therefore, this study was carried out to evaluate the effect of residual stress from welding on the determination of the buckling load and specified compressive strength of the H-section compression member according to the column length variation. A three-dimensional nonlinear finite element analysis was performed for the H-section compression member where the welded joint was fillet welded by applying heat inputs of 3.1kJ/mm and 3.6kJ/mm using the SAW welding method.

Seismic Performance of Built-up Concrete Filled Square Composite Column-to beam Connection with Through Diaphragm (관통형 다이아프램을 갖는 조립형 콘크리트 충전 각형 합성기둥-보 접합부의 내진성능)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Concrete filled tubular columns are widely used because the mutual reaction between the concrete and the tube improves strength and ductility of the columns. In an attempt to secure efficient use of members, built-up square columns featuring large width-thickness ratio and the use of thin steel plates are suggested in this study. In order to evaluate the structural characteristics and seismic performance of the column-to-beam connections of the new shape columns, cyclic load test of T-shaped column-to-beam connections was conducted with variables of diaphragms and concrete-filling. Moment-rotational angle relationship, dissipated energy and failure behavior were compared to evaluate stress transfer mechanism of the new shape built-up square column-to-beam connections associated with the variables.

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Study on the Cyclic Seismic Testing of U-shape Hybrid Composite Beam-to-Composite Column Connections (신형상 U형 하이브리드 합성보와 기둥 접합부의 내진성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.47-59
    • /
    • 2013
  • This study that is a successive secondary study right after the primary bending strength test of a new form of U-shape hybrid composite beam is a cyclic seismic test of U-shape hybrid composite beam and column conncetion. Three specimens are built for the variables which are kinds of columns, depth of beam, continuity or discontinuity of upper plate of beam, and a number of steel bars of end-beam. Kinds of columns are a reinforcement concrete column and a ACT column of CFT shape, and beam depth are 300, and 500 mm. Detail of connection is bolt connection with using a short bracket that is commonly use. As the result, deformability of 2~4% is ensured the floor displacement angle. If it is the negative moment, the maximum moment shows that its capacity is above the nominal moment.

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안)

  • Yang, Jae Guen;Lee, Hyung Dong;Kim, Yong Boem;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.423-433
    • /
    • 2015
  • A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Exterior Connections (CFT 기둥-RC 무량판 슬래브 외부접합부의 횡저항 성능)

  • Song, Ho-Beom;Song, Jin-Kyu;Oh, Sang-Won;Kim, Byung-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.61-64
    • /
    • 2008
  • A combination of CFT column and RC flat plate without formworks is very effectively rapid constructions. This paper verified the lateral resisting capacity of CFT column-RC flat plate exterior connection in comparison with general RC column-flat plate connection and detected moment capacity and ductility capacity of connection according to moment-displacement ratio. We made and tested specimens which have different variables respectively and as a result derive a following conclusion. In CFT-E2 specimen a critical section was extended and maximum moment increased 20% respectively in comparison to general RC column specimen. In BME and CFT-E1 specimens generally shear governed behaviors and CFT-E2 specimen complemented with seismic band, flexure behavior region of slab was extended and also ductility ratio and energy absorptance increased.

  • PDF

Strength of Exterior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트-기둥 외부접합부의 강도)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.470-481
    • /
    • 2003
  • Exterior plate-column connection has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connection is susceptible to punching shear failure. Current design provision cannot accurately explain strength of existing experiments, partly due to the complexity in the behavior of exterior plate-column connection, or partly due to the theoretical deficiency of the strength analysis model adopted. In the present study, nonlinear finite element analyses were performed for exterior connections belonging to continuous flat plate. For each direction of lateral load, the behavior and strength of exterior plate-column connection were quite different. Based on the numerical result, strength prediction model for exterior connection was proposed for each direction of lateral load. Compared with existing experiments, the proposed method was verified.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.