• Title/Summary/Keyword: 모멘트 내력

Search Result 117, Processing Time 0.03 seconds

Experimental Evaluation of Flexural Performance Evaluation of Tapered H-Section Beams with Slender Web (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 실험적 평가)

  • Shim, Hyun Ju;Lee, Seong Hui;Kim, Jin Ho;Lee, Eun Taik;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.483-492
    • /
    • 2007
  • Pre-Engineering Building (PEB) system is one of the most economical structural systems. Tapered members can resist a maximum stress at a single location, whereas stresses of the rest of the members are considerably low. This results in appreciable savings both in terms of materials and construction costs. However, it was appreciated that special consideration would be required for certain aspects of this structural form. In particular, because of their slenderness, webs would buckle laterally and torsionally under the combined action of excessive axial, bending and shear forces. In this study, a total of four large-scale rafters with simple ends were tested. The main parameters were the width-thickness ratio of the web, the stiffener, and the flange brace. The purpose of this experiment is to evaluate the structural stability and to offer back-data on PEB design.

Effect of Flexural Performance on U-Shaped Precast Concrete Beams with Noncontact Lapped Splice (비접촉 겹침 이음된 프리캐스트 U형 보의 휨성능에 미치는 효과)

  • Ha, Sang-Su;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.119-128
    • /
    • 2008
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-shaped PC beam. To evaluate the performance for noncontact lapped splice, experimental and analytical works were conducted. Major variables for tests are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. Analytic research was performed nonlinear finite element method. Analytic research focused on crack pattern, load-deflection curve, comparison of internal force, evaluation of ductility strains of reinforcement bar. Results of experimental and analytical works show that the these variables has much influence on flexural strength and ductility, and joint behavior.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

The Experiment for Performance Evaluation of Column-rafter-purlin Connections of an Arch-type Plastic Multi-span Greenhouse (플라스틱 연동온실 기둥-서까래-도리 접합부의 성능 평가 실험)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho;Kim, Seung-yu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.473-479
    • /
    • 2020
  • In this study, the structural experiment was conducted with two types of specimens to investigate the mechanical behavior of the column-rafter-purlin connection of an arch-type greenhouse under monotonic loading. Based on the experimental results, the flexural performance was analyzed for two types of connections, and connection classification was attempted. Type B showed 77% of flexural performance compared to Type A, and both types showed that the rigidity and flexural strength did not reach the level of the full rigid. The behavior of the column-rafter-purlin connection was dominated by local buckling due to deformation of the weld and fasteners. As a result of connection classification by AISC standard, both Type A and B connections showed a result that did not meet the rigid connection performance assumed during design, and were classified as simple connection. Therefore, the connection performance evaluation and classification results show that the greenhouse design should be made in consideration of connection performance and in order to design a reliable greenhouse structure, a study on establishing clear design standards for the greenhouse connection is necessary.

Performance Evaluation of Long Span Bridge Columns Strengthened with High-Performance Glass Fiber (고성능 유리섬유로 보강된 해상장대교량 교각의 보강성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Jae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • Researches and studies which have been conducted so far on external confinement of long span concrete columns have mainly concentrated on concentric loading. But, long span bridge concrete columns over the sea are mainly subjected to concentrated axial load, and at the same time lange amount of moment by eccentric load. This paper experimentally investigates the performance of externally confined high-strength concrete columns subjected to loading mechanism and evaluates the effectiveness of two confinement materials carbon fibre and high performance glass fibre. Twelve short columns with the same dimensions were cast and tested Six columns were reinforced with hoop bars, the remaining six columns were reinforced with spiral bars and wrapped with three layers of carbon failure and high performance glass FRP sheets. Test variables considered were the shape of internal reinforcement and strengthening materials according to loading location. The experimental results showed that eccentric load could obviously lower down the maximum failure load of FRP-confined concrete columns, compared with the columns under concentric load. And compared with the carbon FRP-confined reinforced concrete columns, high performance glass FRP-confined columns displayed a higher load capacity and ductility, when tested both concentrically and eccentrically.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.