• Title/Summary/Keyword: 모멘트골조

Search Result 271, Processing Time 0.027 seconds

Reversed Cyclic Latcral Load Test of A 2-Bay 2-Story Reinforced Concrete Frame With Seismic Detail (내진상세를 가진 2경간 2층 철근콘크리트 골조의 반복횡하중 실험)

  • Lee, Han-Seon;Woo, Sung-Woo
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.183-193
    • /
    • 1996
  • The objective of this study is to investigate the characteristics of elastic and inelastic bekavior of ductile momenting-resisting reinforced concrete frame subjected to reversed lateral loading such as earthquake excitations. For this purpose, a 2-bay 2-story reinforced concrete plane frame with seismic detail was designed and one 1/2.5-scale subassemblage was manufactured according to the required similitude law. Then, the reversed load test under the displacement control was performed statically to this subassemblage. Finally, the results of this test were analysed regarding to (1) the design load vs actual strength, (2) degradation in stiffness and strength. (3) failure mode or energy dissipation. (4) local deformations.

Seismic Performance of CFT column to H beam Connections Reinforced with T-stiffeners (T-스티프너로 보강된 CFT 기둥-H형강보 접합부의 내진성능)

  • Kim, YoungJu;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.701-709
    • /
    • 2003
  • The paper presented the seismic performance of T-stiffener moment connections for use in steel moment-resisting frames. The connections were strengthened by welding the vertical and horizontal clement of the T-stiffener to the beam flange and column f1ange. Finite clement analysis and experiments were conducted to determine the behavior of T-stiffener-reinforced connections. The results of the finite element analysis confirmed the effectiveness of the T-stiffener, whose horizontal element lengthened to mitigate local stress concentrations of the beam flange on the horizontal stiffener. Full-scale specimens were also tested cyclically to study hysteresis behavior. The main parameters used were the ratio of the T-stiffener to beam strength and the shape of the horizontal element. As the length of the horizontal element increased, the deformation capacity of the connections enhanced. Likewise, all specimens behaved according to the Ramberg-Osgood curve and showed stable hysteresis behavior.

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections (브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가)

  • Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types (천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가)

  • Kwak, Eui-Shin;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

Performance-Based Evaluation of Seismic Design Proposals for RC Ordinary Moment Frames by Spectrum Revision (설계스펙트럼의 개정에 따른 철근콘크리트 보통모멘트골조의 내진성능수준 평가)

  • Shim, JungEun;Choi, Insub;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.211-217
    • /
    • 2022
  • New buildings have been designed using different seismic design standards that have been revised. However, the seismic performance of existing buildings is evaluated through the same performance evaluation guidelines. Existing buildings may not satisfy the performance targets suggested in the current guidelines, but there are practical limitations to discriminating the existing buildings with poor seismic performance through a full investigation. In this regard, to classify buildings with poor seismic performance according to the applied standard, this study aimed to evaluate performance-based investigation of the seismic design proposals of buildings with different design standards. The target buildings were set as RC ordinary moment frames for office occupancy. Changes in seismic design criteria by period were analyzed, and the design spectrum changes of reinforced concrete ordinary moment resisting frames were compared to analyze the seismic load acting on the building during design. The seismic design plan was derived through structural analysis of the target model, compared the member force and cross-sectional performance, and a preliminary evaluation of the seismic performance was performed to analyze the performance level through DCR. As a result of the seismic performance analysis through the derived design, the reinforced concrete ordinary moment frame design based on AIK 2000 has an insufficient seismic performance level, so buildings built before 2005 are likely to need seismic reinforcement.

Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections with Special Moment Frame Details (특수모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가)

  • Kim, Seon Hoon;Lee, Deuck Hang;Kim, Yong Kyeom;Lee, Sang Won;Yeo, Un Yong;Park, Jung Eun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.203-211
    • /
    • 2023
  • For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.

Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections With Intermediate Moment Frame Details (중간모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가)

  • Kim, Seon Hoon;Cho, Jong;Oh, Hyo Keun;Choi, Seok Dong;Yeo, Un Yong;Lee, Deuck Hang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • This study presents a dry precast concrete (PC) beam-column connection, and its target seismic performance level is set to be emulative to the reinforced concrete (RC) intermediate moment resisting frame system specified in ACI 318 and ASCE 7. The key features include self-sustaining ability during construction with the dry mechanical splicing method, enabling emulative connection performances and better constructability. Test specimens with code-compliant seismic details were fabricated and tested under reversed cyclic loading, which included a PC beam-column connection specimen with dry connections and an RC control specimen. The test results showed that all the specimens failed in a similar failure mode due to plastic deformations in beam members, while the hysteretic response curve of the PC specimen showed comparable and emulative performances compared to the RC specimen. Seismic performance evaluation was quantitatively addressed, and on this basis, it confirmed that the presented system can fully satisfy all the required performance for the intermediate RC moment resisting frame.

Evaluation of Emulative Level for Precast Moment Frame Systems with Dry Mechanical Splices by Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 건식 기계적이음을 갖는 프리캐스트 모멘트 골조의 동등성 평가)

  • Kim, Seon-Hoon;Lee, Won Jun;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2024
  • This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.

Lateral Load Distribution Factor for Pushover Analysis including Higher Mode Effects (고차모드 영향을 반영한 푸쉬오버 해석 횡력 분배계수)

  • Kim, Geon-Woo;Song, Jin-Gyu;Lee, Cheol-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • A procedure for determining the lateral load pattern for pushover analysis which includes higher mode effects is presented in this study. It is well-known that the details of future earthquakes at particular site is almost impossible to predict accurately and that the code-design spectra try to represent at least the average nature of probable future earthquakes. Thus the code-design spectrum is directly used as the input earthquakes in this paper when incorporating higher mode effects in the pushover analysis so that the efforts for selecting input motions and constructing response spectrum needed in some existing method could be avoided. A case study based on the time history analysis of a irregular steel moment frame showed that the procedure proposed in this study generally outperforms various pushover analysis procedures of ATC-40 and FEMA 273. However, the proposed procedure tended to be conservative as compared with the time history analysis method.