• Title/Summary/Keyword: 모르터

Search Result 340, Processing Time 0.031 seconds

Pozzolanic Properties of Fly Ash from a Coal Fired Power Plant (미분탄 화력발전소 플라이 애쉬의 포졸란 특성에 관하여)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.702-708
    • /
    • 2003
  • Cement paste, mortar or concrete specimens, substituting the content of Portland cement with fly ash up to 50 wt%, were prepared to investigate the effect of fly ash on the temperature, free lime content and strength etc. of mortar/concrete. Being compared with the concrete made of ordinary Portland cement, temperature increment of the concrete containing 50 wt% fly ash reduced, according to appropriate conversion formulae, to about 45% at the 7 days curing time: the temperature increment of the former amounted to 33.4$^{\circ}C$, while that of the latter only to 18.7$^{\circ}C$. On the other hand, it is better to control the content of fly ash in the cement that is used for reinforced concrete not to exceed 30 wt%. In this study, more than 28 days curing time is necessary in order that the strength of concrete made of fly ash cement will be higher than that of pure Portland cement. In addition, 28-days concrete strength higher than 360 kg/$\textrm{cm}^2$ could be easily achieved even with 50 wt% fly ash cement.

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.

Engineering Properties of Cement Mortar Using Organic Fiber Rehabilitation Materials (유기질 섬유보강재를 사용한 시멘트 모르터의 공학적 특성)

  • Shin Hyun-Sup;Park Yong-Kyu;Kim Kyoung-Min;Lee Gun-Cheol;Hwang In-Sung;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.39-42
    • /
    • 2005
  • This study investigates influence of organic fiber reinforced materials, affecting crack reduction of cement mortar using low grade natural sand(LNS). According to the test, for the properties of fresh mortar, the mortar using natural sand(NS) exhibited that flow value increased until adding most of fiber less than 1$\%$, except for Polyvinly alchol fiber(PVA), and then it decreased. Meanwhile, the mortar mixed with LNS showed that increase of fiber content decrease flow value, regardless of fiber type. Air content increased in the mortar adding nylon fiber(NY) and polypropylene fiber(PP), while it maintained or decreased in the mortar adding cellulose fiber(CL) and PVA. Compressive strength of the mortar does not affect during early age, but mortar using NS and adding 0.1$\%$ of fiber content increased the value, except for PP, at 28 age days, while the mortar mixed with LNS decreased. For the properties of tensile strength, mortar, using NS and adding individually PP and PVA, exhibited higher value. Especially 0.1$\%$ of NY provided the highest value. In addition, the mortar mixed with LNS resulted in improved tensile value as fiber content increased. It is demonstrated that mortar using LNS led to higher length change ratio than natural sand.

  • PDF

The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting (성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향)

  • 오무영;김준희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.145-152
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of mortar and fineness modulus of sand on the properties of fresh mortar. The effect of water-binder ratio. sand-binder ration. contents of ggbs (by mass of total cementitious materials). and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the fellowing conclusions can be drawn: (1) The mixing time needed for high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

Influence of Anchorage of T-Plate on the Seismic Performance of RC Columns Strengthened with Unbounded Wire Rope Units (와이어로프 기반 비부착 보강된 RC 기둥의 내진거동에 대한 T형 강판 정착의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.133-140
    • /
    • 2010
  • Five strengthened columns and an unstrengthened column were tested under constant axial load and cyclic lateral loads to examine the seismic performance of the unbounded strengthening procedure using wire ropes and T-plates. Main variables considered were the presence of mortar cover for strengthening steel element and anchorage method of T-plate. Test results clearly showed that T-plates having a proper anchorage contribute to transfer of applied moment as well as enhancement of ductility of reinforced concrete columns. However, T-plate not anchored fully into a column base can seldom transfer the externally applied moment, though it highly improves the ductility of column. The presence of mortar cover for strengthening steel elements is significantly effective in enhancing the initial stiffness and flexural capacity of the strengthened columns, but has an adversely effect on enhancing the ductility. The ultimate moment strength predicted from the extended section laminae method in better agreement with test results compared with predictions obtained using stress black specified in ACI 318-05.

Studies on the Effects of Curing Temperature on the Strength of Briquette Ash Hardened by Cement (양생온도(養生溫度)가 Cement로 경화(硬化)시킨 연탄재 Mortar의 강도(强度)에 미치는 영향(影響)에 관한 연구(硏究))

  • Kim, Seong Wan;Kang, Sin Up
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.119-130
    • /
    • 1980
  • This study was conducted to determine the effect of curing temperature on the strength of briquette ash mortar hardened by cement. The six different kinds of briquette ash mortars were made by mixing the cement : briquette ash, ((cement (90%)+lime (10%)) : briquette ash and cement : standard sand at the ratio of 1:2, 1:3, 1:4, 1:5, 1:7, and 1:9, respectively and the cu ring temperatures were $20^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$. The strength of compression, bending and tensile were measured at ${\sigma}_7$ and ${\sigma}_{28}$. The summarized results were as follows. 1. At the ${\sigma}_7$ of 1:2 the compressive strength of the cement : briquette ash and (cement+lime) : briquette ash were 69.3% and 75.1%, respectively of the mortar made of the standard sand. At the ${\sigma}_{28}$ the strength of those materials were 56.4% and 49.0%, respectively. 2. At the ${\sigma}_7$ of 1:2 the tensile strength of the cement : briquette and (cement+lime) : briquette ash were 64.4% and 47.1%, respectively of the mortar made of standard sand. At the ${\sigma}_{28}$ the tensile strength of those materials were 69.6% and 64.8%, respectively. 3. At the ${\sigma}_7$ of 1:2 the bending strength of the cement : briquette ash and (cement+lime) : briquette ash were 46.3% and 65.9%, respectively of the mortar made of the standard sand. At the ${\sigma}_{28}$ the strength of those materials were 89.9% and 96.7%, respectively. 4. The increment of strength per $1^{\circ}C$ increase of curing temperature were on the average $0.92{\sim}1.75kg/cm^2$ of compressive strength, $0.12{\sim}0.16kg/cm^2$ of the tensile strength and $0.21{\sim}0.38kg/cm^2$ of the bending strength.

  • PDF

The Influence of Admixture of Lignosulfonic Acid Type on the Strength of Mortar (Lignosulfonic Acid계(系) 감수제(減水劑)가 모르터의 강도(强度)에 미치는 영향(影響))

  • Kim, Han Young;Kim, Seong Wan
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 1985
  • This study is intended to find out the influence of Lignosulfonic Acid Type Admixture on compressive, tensile, flexural strength and dispersing action of mortar, and fixation of by-product of pulp industry. 1. The more Pozzolith-84 is added, the larger flow value is. The admixture of lignosulfonic acid type adhere to cement particles and the surface potential of particles is generated. On account of the repulsion among the cement particles, they are dispersed and the mortar get workable, so the production cost of precast product is curtailed and the amount of cement is reduced in a certain workability of mortar. 2. The strength of mortar is greater than plain mortar when P/C added is 0.2 and 0.4%. As time passed the potential energy is reduced and the distance of particles which lignosulfonic acid adhered to get near according as the amount of adhesion is increased. The setting and hardening reaction of morter is occurred in close state, so the strength of mortar is increased a little. The strength of mortar is less than plain mortar when amount P/C added is 0.8%. Pozzolith-84 is mainly composed of lignosulfonic acid and lignin does not influence the hardening of mortar, therefore the remained $SO_3$, $SO_3H$ are the reason of decrease of strength. 3. There is high significance between specific gravity and compressive strength. The larger specific gravity is, the more compressive strength is increased. There is high significance between 7 day's strength and 28 day's strength. The larger compressive strength is, the more tensile and flexural strength are increased. 4. Since Pozzolith-84 is a by-product of pulp industry, by using the Pozzolith-84 admixture the concreate quality is improved. The water pollusion is reduced according to fix by-products in concrete structure.

  • PDF

Studies on the Strength of Briquette Ash Hardened by Cement (연탄재를 시멘트로서 경화(硬化)시켰을 때의 강도(强度)에 관(關)한 연구(硏究))

  • Kim, Seong-Wan
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.1
    • /
    • pp.45-55
    • /
    • 1979
  • This study made to find the variation of strengths of briquette ash which were hardened into cement. The briquette ash were mixed with the cement, ((cement (90%)+slaked lime (10%)) and ((cement (80%)+fly ash (20%)) in the ratio of 1:2, 1:3, 1:4, 1:5, 1:7 and 1:9, respectively, and these were compared with the one made of cement plus standard sand in the strengths of compression, tension and bending at the ages of 7 days and 28 days. The results from the study conducted preliminary without studying the economical aspects or duration of the products are summarized as follows: 1. The compressive strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash and (cement+fly ash) to briquette ash were 84%, 90% and 75% at the age of 7 days and 84.9%, 73.5% and 69.8%, respectively of those of Korean Standard values. 2. The compressive strength s of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash and (cement+fly ash) to briquette ash were 69.3%, 75.1% and 41.3% at the age of 7 days and 56.4%, 49%, and 46.5% at the age of 28 days, respectively of the mortar made of standard sand. 3. The tension strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash, and (cement+fly ash) to briquette ash were 64.4%, 47.1% and 35.4% at the age of 7days and 69.6%, 64.8%, and 57.3%, respectively of that of the mort ar produced with standard sand. 4. The bending strengths of mortar made of 1 to 2 ratios of cement to briquette ash, (cement+slaked lime) to briquette ash, and (cement+fly ash) to briquette ash were 46.3%, 65.9% and 39.1% at the age of 7 days and 89.9%, 96.7%, and 85.1%, respectively of that of mortar produced with standard sand. 5. The bending strength of the mortar was lower than that of cement mortar, when the briquette ash were harqened into cement. However, the mortar produced by such method seemed to be used as the secondary products of cement or concrete. The additional usefullness of the hardened biquette ash can be found in contributing toward the solving the various pollution problems, the saving the labor costs needed to clean-up waste materials, and the saving the construction materials.

  • PDF

An Experimental Study on the Water Repellent Property of Mortar Applied Water Repellent Agent of Inorganic Polymer Type (무기질 폴리머계 흡수방지재를 도포한 모르터의 발수성능 평가에 관한 실험적 연구)

  • 이일형;엄덕준;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.33-37
    • /
    • 2004
  • Recently, Growing tendency for structure surface to use water repellent agent has increased steadily. But investigation of it's protection and durability property is not sufficient. Therefore, this paper shows the investigation about repellent property and micro structure's change in surface layer of mortar that is applied by water repellent agent. Water repellent property, absorption coefficient, air permeability, porosity and observation of micro construct was investigated according to water repellent agent type. The test results indicated that mortar applied water repellent agent appears tiny absorption coefficient, but air permeability is maintained. The reason is because silane solution is coating at capillary surface of a wall and minute pore structure is changeless.

  • PDF