• Title/Summary/Keyword: 모르타르 성능

Search Result 362, Processing Time 0.018 seconds

A Effect of Chemical Composition and Replacement Ratio of Limestone Admixture on Initial Cement Characteristics (석회석 혼합재의 화학성분과 치환량이 시멘트 초기 물성에 미치는 영향)

  • Dong-Kyun Suh;Gyu-Yong Kim;Jae-Won Choi;Kyung-Suk Kim;Ji-Wan Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • Utilizing admixture, which is one of the raw material replacement method in the cement industry, is expected to be easily and quickly put to practical use as it is relatively more accessible than other methods. Among cement admixtures, limestone powder is reported to be able to improve cement performance through nucleation effects, chemical effects, and filler effects, so it is a material expected to be suitable as a cement admixture. Meanwhile, as high-quality limestone is depleted around the world, the use of limestone with clay or high magnesia (MgO) content is becoming increasingly inevitable. Therefore, in this study, we attempted to evaluate the suitability of limestone cement as a admixture by measuring the basic properties of limestone cement mixed with limestone of different qualities commonly used in Korea. As a result, the effect of alite reaction promotion was confirmed regardless of the chemical composition of the limestone binder. However, the dilution effect depending on the substitution amount was greater than the chemical composition. It is believed that normal-grade limestone can be used as a mixture as long as the limestone content in cement is within 15 % in this scope of study. In the future, we plan to evaluate the impact of the chemical composition of the limestone mixture through additional experiments depending on the chemical composition of cement.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.