• Title/Summary/Keyword: 모르타르의 공학적 특성

Search Result 98, Processing Time 0.02 seconds

Study on Applicability of NATM Composite Lining Method (NATM Composite 라이닝 공법의 적용성 연구)

  • Ma, Sang-Joon;Kang, Eun-Gu;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.69-84
    • /
    • 2011
  • This paper presents the applicability of NATM Composite Lining method in domestic tunnel construction sites. Firstly, in order to produce high quality PC Panel, optimal steam curing condition is reviewed. And in preparation for fire inside the tunnel, the fire-resistance test of PC Panel is carried out. The constructability of NATM Composite Lining method and the drainage ability of light-weight foamed mortar is also evaluated through field construction test. And PC Panel combination program is developed to calculate the quantity of PC Panel efficiently. Besides, economic evaluation for NATM Composite Lining method is conducted. From this research, it is clearly found that NATM Composite Lining method is applicable to domestic tunnel construction site.

An Experimental Study on the Flowability and Compressive Strength of Color Concrete Mixed with Pigments (안료를 첨가한 칼라콘크리트의 유동성 및 강도에 대한 실험적 연구)

  • Choi, Jae Jin;Hwang, Eui Hwan;Moon, Dae Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.547-553
    • /
    • 2006
  • To know the effect of pigments on the material properties of color concrete, mortar and concrete tests were carried out by the using 5 kinds of pigment. The major component of red, yellow and black pigments was iron oxide and coloring component of blue and green pigments was copper phthalocyanine. Properties of mortar and concrete were some of difference according to adding ratio and kind of pigments. In case of using red, yellow and black pigments, setting time of concrete speeded a little and compressive strength was tendency to increase and slump or air content of concrete was same or decreased. On the other hand, in case of using green and blue pigments, compressive strength of concrete decreased largely because of the excessive air entrainment of surfactant and sump or air content of concrete increased highly. When the antifoaming agent was added to the color concrete mixed with green and blue pigments, compressive strength of concrete was improved and similar to that of concrete without pigment.

Isolation of Fungal Deteriogens Inducing Aesthetical Problems and Antifungal Calcite Forming Bacteria from the Tunnel and Their Characteristics (터널에서 미학적 문제를 야기하는 진균 및 항진균 활성을 가진 탄산칼슘 형성세균의 분리와 특성)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.287-293
    • /
    • 2011
  • The purpose of this study was to isolate and characterize fungal deteriogens, which induce discoloration of the cement tunnel, and calcite forming bacteria (CFBs), which have antifungal activity against fungal deteriogens. Isolation of mold, bacteria and yeast was performed using several solid media and partially identified using internal transcribed spacer (ITS); 5.8S rRNA gene sequencing and 16s rDNA sequencing. A total of 19 microbial strains were identified with the most widely distributed fungal strain being Cladospirum sphaerospermum. In addition, five bacteria derived from the tunnel were identified as CFBs. Amongst the latter, Bacillus aryabhatti KNUC205 exhibited antifungal activity against Cladospirum sphaerospermum KNUC253 and Aspergillus niger KCTC6906 as concentrated filtered supernatants.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

NOx Reduction Performance in Cement Mortar with TiO2 Treatment and Mineral Admixture (무기계 혼화재료를 혼입한 모르타르 시편의 광촉매 처리를 고려한 NOx 저감 성능)

  • Yoon, Yong-Sik;Kim, Hyeok-Jung;Park, Jang-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.506-513
    • /
    • 2020
  • In this study, the mechanical properties, absorption, and reduction performance of NOx in the mortar containing mineral admixture like zeolite and active hwangtoh were evaluated. Zeolite and active hwangtoh were used as binder, and zeolite and active hwangtoh were substituted for cement. The substitution ratio of two types of mineral admixtures was considered as 20 and 30% respectively. As a result of evaluating the compressive strength and flexural strength of each mortar specimen, the highest strength in the plain mixture was evaluated. As the substitution ratio of zeolite and active hwangtoh increased, the compressive and flexural strength decreased. In addition, the difference of compressive and flexural strength between active hwangtoh and zeolite mixing was evaluated to be insignificant. To evaluate the absorption rate, the mixture was designed to lower the W/B ratio of the existing mixture and set the substitution ratio of active hwangtoh and zeolite at 25%. The highest absorption ratio in the mortar with zeolite was evaluated, and the difference in absorption ratio between the remaining two mortar mixtures was small. The assessment of reduction performance of NOx considering the application of photocatalyst showed a clearly decreasing reduction behavior, even if they were the same mortar mixture. Zeolite and active hwangtoh also showed a higher NOx reduction than the Plain mixture, because of their porosity properties. In the case of active hwangtoh, the absorption ratio was lower than that of zeolite mixture, but the reduction of NOx performance was better than the result of zeolite mixture.

Estimation Error and Reliability of Measuring Unit Water Content Test Methods for Fresh Concrete Depending on Mix Design Factors at the Laboratory Level (실험실 수준에서 배합변수별 굳지 않은 콘크리트 단위수량 실험방법의 추정오차 및 신뢰성 검토)

  • Park, Min-Yong;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.101-110
    • /
    • 2022
  • In this study, water content tests were performed on various fresh concretes subjected to different binder compostions to review the estimation errors and reliability of water content test methods. Micro-oven drying method, air-meter method, capacitance method and microwave penetration method were used to estimate water content of fresh concrete. Errors in water content estimation were analyzed by each test method. Regardless of the test method of water content, the estimation error was less than 5 %, and in the case of the test using mortar, the error in the estimation value was relatively large. In addition, based on the test results of water content of various concrete, the probability density function in which the estimation error for each test method becomes the population was analyzed. Water content test methods of fresh concrete which using concrete samples showed high estimate reliability of 97 % within the estimation error range of ± 10 kg/m3. On the other hand, the reliability of water content test method using mortar samples was lower.

An Experimental Study on the Improvement of Quality of Mixed Aggregate Using Recycled Aggregate (순환골재 사용 혼합골재의 품질 개선을 위한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Kim, Choong-Gyum;Lee, Sea-Hyun;Kim, Han-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • In this study, recycled aggregate and natural aggregate were mixed in advance using an aggregate mixing facility that was developed to improve the quality of recycled aggregate concrete. Then the mixed aggregate was applied and concrete characteristics before and after a mix were considered. Based on the findings extracted, this study aimed to suggest a new direction for quality stabilization and application activation of recycled aggregate. The test results of change rates of mortars and coarse aggregates in fresh concrete mixed by a concrete mixer, before and after mixing aggregates showed that the variations of the mortars and coarse aggregates in the concrete mixed with the aggregates beforehand were decreased than those in the concrete before mixing them. The variation of compressive strength and the mean compressive strength at the ages of 3 and 7 days showed similar results before and after the aggregates were mixed, and the strength at the age of 28 days before and after mixing them showed larger deviation than that at the ages of 3 and 7 days. The use of the mixed aggregates after mixing aggregates beforehand reduced the variation in strength and is believed that it is advantageous for long-age strength development. The above results show that the variations of coarse aggregates and compressive strength in the concrete using the mixed aggregates produced by mixing recycled aggregates and natural aggregates beforehand are reduced so it will be possible to produce the homogeneous concrete by mixing aggregates beforehand.