• Title/Summary/Keyword: 모드 간섭

Search Result 275, Processing Time 0.037 seconds

R-Mode 국제 표준화 동향과 국내 적용을 위해 고려할 사항

  • Park, Sang-Hyeon;Seo, Gi-Yeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.40-41
    • /
    • 2016
  • 위성전파항법시스템은 이용의 편리성으로 인해 다양한 분야에서 측위, 항법 및 시각동기 정보를 획득하기 위한 목적으로 널리 활용되고 있다. 그러나 위성전파항법시스템은 낮은 신호전력특성 때문에 전파간섭에 매우 취약하다. 전파간섭으로 인한 위성전파항법시스템의 가용성 저하 사례가 빈번해짐에 따라 백업 시스템에 대한 필요성과 국제적 공조를 통한 백업 시스템 마련에 대한 기술 협력의 공감대가 높아지고 있다. R-Mode는 현재 해상에서 활용되고 있는 전파신호를 이용하여 거리측정을 하는 방법으로써 신규 전파항법 인프라 구축에 따른 큰 투자 없이 적은 비용으로 위성전파항법시스템의 백업 시스템을 구현한다는 장점을 갖는다. 본 논문에서는 R-Mode의 기술 현황과 국제 표준화 동향에 대해 살펴본다. 그리고 R-Mode를 국내에 적용하기 위해 고려해야 할 사항들을 설명한다.

  • PDF

Signal Stabilization of Optical Fiber Acoustic Sensor Using a Cylindrical Piezoelectric Stretcher (원통형 압전신장기를 이용한 광섬유 음향센서의 신호안정화)

  • Lee, D.-H.;Jho, M.-J.;Suh, S.-J.;Eun, H.-J
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1989
  • A Mach-Zehnder interferometer using single mode optical fiber was constructed which operates in homodyne detection scheme. Its response to air-borne soun pressure was examined experimentally. A signal stabilizer was developed for maintaining optical fiber interferometer in quadrature condition using a cylindrical piezoelectric stretcher. This maintains the optical fiber sensor at a maximum sensitivity in the presence of the phase drift caused by temperature fluctuation and other types of environmental disturbances.

  • PDF

Development of electronic shearography for vibration analysis (진동해석을 위한 전자전단간섭계의 개발)

  • Kang, Young-June;Kwon, Yong-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2047-2054
    • /
    • 1997
  • This paper describes a measuring method of vibration mode shapes by the Electronic Shearography. This method called the speckle interferometer has many merits in practical use, such as low sensitivity to environmental noise, low limit of coherent-length and simple optical configuration. In this study, we developed Michelson-type shearing interferometer provided with a phase stepping mirror and with a bias modulation mirror to quantify the vibration gradient fields. Results of application to a simple cantilever plate show that the vibration amplitude fields obtained are in good agreement with those of the electronic speckle pattern interferometry (ESPI).

Measurement of the effective optical thickness of optical media using intermode beat interferometer scheme (두 종모드 레이저 빛 사이의 맥놀이 신호를 이용한 간섭계에 의한 유효 광학 두께 측정)

  • 윤신영;조규만;이용산
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 1997
  • A wide dynamic range heterodyne interferometer scheme using intermode beat between a stabilized, dual frequency He-Ne laser beam has been applied for a measurement of optical thickness of an optical medium. Resolution of the optical thickness measurement is about $\pm$ 1.74 ${\mu}{\textrm}{m}$. Using this technique, we are able to determine the optical thickness of an organic dye film. We also obtain a map of the optical thickness variations over a surface of the film

  • PDF

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

Novel Design Concept for Compact MMI Couplers (소형 다중모드 간섭 결합기의 새로운 설계 개념)

  • Ho, Kwang-Chun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.305-306
    • /
    • 2009
  • This paper shows through detailed simulations that the length of conventionally designed multimode-interference couplers can be shorted significantly by stepped-width and stepped-index design. For the cross-coupling device, this stepped-design results in 9% or more length reduction.

  • PDF

Optical technique of precision measurement using Electronic Speckle Pattern Interferometry (ESPI를 이용한 광학식 정밀 계측 기술)

  • 은재정;정영환;최평석;박해수
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.40-46
    • /
    • 2003
  • In this research, we accomplished the interpreting about the vibration of the object, which is the out of plane displacement in the Electronic Speckle Pattern Interferometry(ESPI), one of the optical measuring technique. The vibrating object has a inherent nodal line, therefore we can get the information about the vibration of the object by interpreting it. we used a speaker and a cantilever plate for a measurement object, and interpreted it qualitatively by using the Time-Average ESPI. In this experimental result, the speaker has the lower mode of fringe at 550Hz, 570mV, and the higher mode of fringe at 950Hz, 570mV This ESPI is a non-destructive test, and because of using the laser at measuring, it has a high resolution. The ESPI can test vibration mode regardless of the test object size, because the area which illuminated laser is the test area.

  • PDF

A High-Resolution Heterodyne Interferometer using Beat Frequency between Two-Axial Modes of a HeNe Laser (2-종모드 레이저를 이용한 고분해능 헤테로다인 간섭계)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.195-201
    • /
    • 2002
  • We propose a new scheme of high-resolution heterodyne interferometer that employs the two-axial mode He-Ne laser with an inter-mode beat frequency of 600~1000 MHz. An electronic RF-heterodyne circuit lowers the beat frequency down to 5 MHz, so that the phase change of the interferometer output is precisely measured with a displacement resolution of 0.1 nanometer without significant loss of dynamic bandwidth. A thermal control scheme is adopted to stabilize the cavity length with ainus to suppress frequency drifts caused by the phenomena of frequency pulling and polarization anisotropy of the two-axial made laser to a stability level of 2 parts in $10^9$. The two-axial mode HeNe laser yields a high output power of 2.0 mW, which allows us to perform multiple measurements of up to 10 machine axes simultaneously.