웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.
현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.
DBMS 파라미터 튜닝이란 데이터베이스에서 제공하는 다양한 파라미터의 값을 조율하여, 최적의 성능을 도출하는 과정이다. 데이터베이스 종류에 따라 파라미터 개수가 수십 개에서 수백 개로 다양하며, 각 기능이 모두 다르기 때문에 최적의 조합을 찾는 것은 쉽지 않다. 선행 연구에서는 BO 기법을 사용하여 적절한 파라미터 값을 추출했지만, 파라미터 개수에 비례하여 차원이 커지는 문제가 발생한다. 본 논문에서는 통계적으로 파라미터를 분류하여 탐색 공간을 줄인 다음 단계적으로 BO 를 수행하는 PBO 방식을 제안한다. 파라미터 값을 랜덤하게 할당하여 벤치마킹한 결과값을 군집화한 후, 각 군집별로 파라미터와의 연관성을 분석해 높은 상관관계를 가진 파라미터를 매칭시켜 분류한다. 제안하는 방법론을 검증하기 위하여 8 가지 회귀 모델과의 비교 실험을 통해 제안한 방법론의 우수성을 검증하였다.
표준형 원자력발전소에서는 원자로 내의 핵연료 봉으로부터 발생하는 열에너지를 열교환기인 증기발생기로 전달하는 원자로냉각재 계통이 있다. 핵연료 봉을 적절한 냉각 상태로 유지하기 위하여 원자로냉각재의 온도와 압력뿐만 아니라 체적을 제어하고 있다. 원자로냉각재 체적은 용량이 큰 반면에 제어하는 밸브의 크기는 작아서 제어 응답이 길어서 현장에서 경험적으로 튜닝하는 것은 매우 어렵다. 본 논문에서는 체적제어루프의 수학적인 모델링을 통하여 오프라인으로 최적 제어 파라미터를 찾고, 실제 적용한 결과를 보여준다. 제어루프 모델링을 위하여 일반화 프로세서 모델 식으로부터 실제 운전 데이터로 모델 파라미터를 결정하는 경험적 방법을 사용하였다. 이로부터 구한 제어 파라미터를 실제 적용한 결과, 적절한 제어 응답을 얻었으며 모델링 과정이 적절하였음을 확인하였다.
본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.
AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.
대부분의 머신러닝 및 딥러닝 모델의 경우 하이퍼 파라미터 선택은 모델의 성능에 큰 영향을 미친다. 따라서 전문가들은 작업을 수행하기 위해 모델을 구축할 때 하이퍼 파라미터 튜닝을 수행하는 데 상당한 시간을 소비해야 한다. Hyperparameter Optimization(HPO)을 해결하기 위한 알고리즘은 많지만 대부분의 방법은 검색을 수행하기 위해 각 epoch에서 실제 실험 결과를 필요로 한다. 따라서 HPO 검색을 위한 시간과 계산 지원을 줄이기 위해 본 논문에서는 Multi-agent Proximal Policy Optimization(MAPPO) 강화 학습 알고리즘을 제안한다. 2개의 이미지 분류 데이터 세트에 대한 실험 결과는 우리의 모델이 속도와 정확성에서 다른 기존 방법보다 우수하다는 것을 보여준다.
발전소 등의 대규모 공정 플랜트에서 사용하고 있는 대부분의 상용 제어기는 PID 제어기이며, 온도 루프를 제외한 대부분의 제어루프가 PI 제어기를 채용하고 있다. 제어 시스템의 성능이 제어기 파라미터의 값에 의해 결정되므로, PI 제어기의 튜닝이 중요하다. 한편, 실제 현장에서의 PI 제어기의 튜닝은 많은 시간과 노력을 필요로 하는 시행착오에 의해서 이루어지고 있으며, 각 제어 루프 제어기 파라미터의 초기값 설정에 어려움을 갖고 있는 실정이다. PI 튜닝 기법이 많이 나와 있지만 시험 신호의 인가 문제로 인해 현장 활용에는 많은 어려움을 가지고 있다. 본 논문에서는 단순한 시험 신호로부터 PI 초기 설정값을 산출할 수 있는 방법에 대해서 알아본다. 또한 발전소에 적용된 국산 분산 제어 시스템을 보면, 대부분 데이터 로깅 시스템으로서만 활용되고 있고, 제어 시스템으로의 활용은 거의 이루어지지 않고 있으며, PID제어기에 대한 구현도 완벽하지 못하여 디지털 PI 제어기의구현 방법에 대한 고찰도 요구되고 있다. 본 논문에서는 디지탈 PI 제어기를 구현하는데 있어서 필요한 사항들, 즉 아날로그 제어기의 디지털 등가 제어기로의 변환 기법, 샘플링 주기의 결정 방법, 그리고 그 외에 공정 제어기가 가져야할 기능들에 대해서 언급한다. 그리고나서 PI 튜닝 기법과 아날로그 제어기의 디지털 등가 제어기로의 변환기법, 샘플링 주기 결정 방법 등에 대해 플랜트 모델을 선정하고 시뮬레이션을 통해 그 효용성을 보인다.
최근 거대 언어 모델의 발전으로 프로그램 합성 분야에서 활용되고 있는 코드 생성 언어 모델의 보안적 측면에 대한 중요성이 부각되고 있다. 그러나, 이를 위해 모델 전체를 재학습하기에는 많은 자원과 시간이 소모된다. 따라서, 본 연구에서는 효율적인 미세조정 방식 중 하나인 프롬프트 튜닝으로 코드 생성 언어 모델이 안전한 코드를 생성할 확률을 높이는 방법을 탐구한다. 또한 이에 따른 기능적 정확성 간의 상충 관계를 분석한다. 실험 결과를 통해 프롬프트 튜닝이 기존 방법에 비해 추가 파라미터를 크게 줄이면서도 보안률을 향상시킬 수 있음을 알 수 있었다. 미래 연구 방향으로는 새로운 조정 손실함수와 하이퍼파라미터 값을 조정하여 성능을 더욱 향상시킬 수 있는지 조사할 것이다. 이러한 연구는 보다 안전하고 신뢰할 수 있는 코드 생성을 위한 중요한 발전을 이끌 수 있을 것으로 기대된다.
본 논문은 적대적 생성 신경망 기법의 하나인 Pix2Pix를 활용하여 컬러색상을 입히는 경우 학습된 이미지의 빛 반사 정도에 따라 예측결과가 손상되어 나오는 부분에 집중하여 Pix2Pix 모델 적용 전 이미지 전처리 프로세스 및 모델 최적화를 위한 파라미터 테이블을 구성한다. 기존 논문에 나온 Pix2Pix 모델을 활용하여 실생활에 적용하기 위해서는 해상도에 대한 확장성을 고려해야한다. 학습 및 예측결과 이미지 해상도를 키우기 위해서는 동시에 모델의 커널 사이즈 등을 같이 맞춰주는 부분을 수정해줘야 하는데 이부분은 파라미터로 튜닝 가능하도록 설계했다. 또한 본 논문에서는 예측결과가 빛 반사에 의해 손상된 부분만 별도 처리하는 로직을 같이 구성하여 예측결과를 왜곡시키지 않는 전처리 로직을 구성하였다. 따라서 활용성을 개선하기 위하여 Pix2Pix 모델의 학습이미지에 공통적인 빛반사 튜닝 필터를 적용하는 부분과 파라미터 구성부분을 추가하여 모델 정확도를 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.