본 논문은 인체 스캔 데이터를 예제 데이터베이스로 사용하여 2차원 사진으로부터 3차원 아바타 모델을 생성하는 기술을 제안한다. 직접 기하학적인 변형을 통해 3차원 아바타를 생성하는 기존의 방법들과는 달리, 미리 스캔한 다수의 3차원 인체 형상 모델 데이터베이스를 사용하여 사진에 나타난 실루엣과 가장 일치하도록 기본 모델을 변형 및 계산함으로써 모델을 획득한다. 본 연구는 예제 기반의 모델 변형 방법이 가지는 사실적인 인체 모델 생성의 장점, 2차원 사진을 이용한 방법이 가지는 텍스쳐 매핑 및 실루엣 정보 반영의 장정을 모두 가진다. 변형된 모델은 텍스쳐 매핑을 가한 후 애니메이션을 적용하여 가상환경에 활용할 수 있다.
본 연구에서는 설명 문장 생성을 통한 해석 가능한 시각적 질의응답 모델을 설계하고 학습 방법을 제시한다. 설명 문장은 시각적 질의응답 모델이 응답을 예측하는 데에 필요한 이미지 및 질문 정보와 적절한 논리적인 정보의 조합 및 정답 추론 과정이 함의되어 있을 것으로 기대한다. 설명 문장 생성 과정이 포함된 시각적 질의응답의 기본적인 모델을 기반으로 여러 가지 학습방법을 통해 설명 문장 생성 과정과 응답 예측 과정간의 상호관계를 분석한다. 이러한 상호작용을 적극적으로 활용할 수 있는 보다 개선 시각적 질의응답 모델을 제안한다. 또한 학습한 결과를 바탕으로 설명 문장의 특성을 활용하여 시각적 질의응답 추론 과정을 개선함으로써 시각적 질의응답 모델의 발전 방향을 논의한다. 본 실험을 통해서 응답 예측에 적절한 설명 문장을 제시하는 해석 가능한 시각적 질의응답 모델을 제공한다.
기계 독해는 입력 받은 질문과 문단의 관계를 파악하여 알맞은 정답을 예측하는 자연어처리 태스크로 양질의 많은 데이터 셋을 필요로 한다. 기계 독해 학습 데이터 구축은 어려운 작업으로, 문서에서 등장하는 정답과 정답을 도출할 수 있는 질문을 수작업으로 만들어야 한다. 이러한 문제를 해결하기 위하여, 본 논문에서는 정답이 속한 문서로부터 질문을 자동으로 생성해주는 BERT 기반의 Sequence-to-sequence 모델을 이용한 한국어 질문 생성 모델을 제안한다. 또한 정답이 속한 문서와 질문의 언어가 같고 정답이 속한 문장의 주변 단어가 질문에 등장할 확률이 크다는 특성에 따라 BERT 기반의 Sequence-to-sequence 모델에 복사 메카니즘을 추가한다. 실험 결과, BERT + Transformer 디코더 모델의 성능이 기존 모델과 BERT + GRU 디코더 모델보다 좋았다.
사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.
IoT 기술의 발전 및 확산으로 다양한 도메인에서 서로 다른 특성의 시계열 데이터가 수집되고 있다. 이에 따라 단일 목적으로 수집된 시계열 데이터만 아니라, 다른 목적으로 수집된 시계열 데이터들 또한 통합하여 분석활용하려는 수요 또한 높아지고 있다. 본 논문은 파편화된 시계열 데이터들을 선택하여 통합한 후 딥러닝 모델을 생성하고 활용할 수 있는 해시함수 기반 학습 모델 관리 플랫폼을 설계하고 구현하였다. 특정되지 않은 데이터들을 기반하여 모델을 학습하고 활용할 경우 생성 모델이 개별적으로 어떤 데이터로 어떻게 생성되었는지 기술되어야 향후 활용에 용이하다. 특히 시계열 데이터의 경우 학습 데이터의 시간 정보에 의존적일 수밖에 없으므로 해당 정보의 관리도 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 해시 함수를 이용해서 생성된 모델을 계층적으로 저장하여 원하는 모델을 쉽게 검색하고 활용할 수 있도록 하였다.
관계추출은 문장 내 두 개체 간의 의미적 관계를 추론하는 자연어분석 태스크이다. 딥러닝의 발전과 더불어 관계추출은 BERT 계열의 이해형 언어모델을 이용하였다. 그러나, ChatGPT의 혁신적인 등장과 함께, GPT계열의 생성형 언어모델에 대한 연구가 활발해졌다. 본 논문에서는 소규모의 생성형 언어모델(Kebyt5)을 이용하여 관계추출 성능개선을 위한 프롬프트 구성 및 생각의 사슬(CoT) 학습 방법을 제안한다. 실험결과 Kebyt5-large 모델에서 CoT 학습을 수행하였을 경우, Klue-RoBERTa-base 모델보다 3.05%의 성능개선이 있었다.
생체데이터란 인간개체로부터 얻을 수 있는 고유의 생체신호를 통틀어 일컫는 것이다. 본 연구에서는 생체데이터를 위한 팩터 분석 모델에 텐서 개념을 적용하여, 2차 텐서로 표현된 데이터를 위한 생성모델을 제안한다. 이 모델을 바탕으로 데이터로부터 분류에 핵심이 되는 정보를 안정적으로 추출하여 유사도 함수를 만들고 분류를 수행하는 방법을 제안한다. 실험을 통해 제안하는 방법이 기존의 벡터형태의 데이터에 대한 생성 모델을 사용한 경우보다 우수한 성능을 가짐을 확인할 수 있었다.
본 논문에서는 계층형 적대적 생성 신경망(GAN: Generative Adversarial Network)에서 오류 판별자를 추가하여 영상 생성 성능을 개선하는 방안을 제안한다. 제안하는 영상 생성 방법에서는 영상 생성자가 빈번히 발생시키는 오류에 대해 별도로 학습을 수행하는 판별자를 모델에 추가하여 계층형 적대적 생성 신경망을 구성하였다. 본 논문에서 제안한 모델을 이용하여 생성한 영상의 효용성을 검증하는 방법으로는 Inception Score를 사용하였다. 학습 데이터로 celebA의 유명인 얼굴 이미지 중 정면 이미지 155,680장을 이용하였다. 본 논문의 모델로 생성한 10,000장의 얼굴 이미지를 Inception Score로 평가한 결과, 평균 1.742p의 성능을 나타내어 기존의 영상 생성 방법보다 높은 점수를 얻을 수 있었으며, 효용성을 확인할 수 있었다.
정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.
타임드 오토마타 모델 기반 개발 방법을 지원하는 TIMES 도구는 실시간 소프트웨어에 대한 타임드 오토마타 모델 명세, 시뮬레이션, 검증, BrickOS 기반 코드 생성을 지원한다. 하지만 BrickOS 기반 코드는 엄격한 실시간 제약성 만족을 지원하지 않아서 실시간 내장형 소프트웨어 개발에 그대로 사용하기가 어렵다. 본 논문에서는 타임드 오토마타 모델로부터 실시간 내장형 소프트웨어 구현에 사용될 수 있는 VxWorks 기반 코드를 체계적으로 생성하기 위한 방법을 제안한다. TIMES 도구를 사용해 자동 생성된 BrickOS 기반 코드에서 플랫폼 독립적인 코드는 활용하고, 플랫폼 의존적인 코드들을 분류해 내어 각각 VxWorks 기반 코드로 변환하는 방법을 제안한다. 내장형 소프트웨어 개발시 타임드 오토마타 모델 기반 개발 방법의 적용 가능성을 확인하기 위해 변환 항목들을 통해 생성된 VxWorks 기반 코드에 대한 테스트를 수행하고 결과를 분석한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.