• Title/Summary/Keyword: 모델조정기법

Search Result 263, Processing Time 0.023 seconds

Indoor positioning method using WiFi signal based on XGboost (XGboost 기반의 WiFi 신호를 이용한 실내 측위 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Kim, Dae-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2022
  • Accurately measuring location is necessary to provide a variety of services. The data for indoor positioning measures the RSSI values from the WiFi device through an application of a smartphone. The measured data becomes the raw data of machine learning. The feature data is the measured RSSI value, and the label is the name of the space for the measured position. For this purpose, the machine learning technique is to study a technique that predicts the exact location only with the WiFi signal by applying an efficient technique to classification. Ensemble is a technique for obtaining more accurate predictions through various models than one model, including backing and boosting. Among them, Boosting is a technique for adjusting the weight of a model through a modeling result based on sampled data, and there are various algorithms. This study uses Xgboost among the above techniques and evaluates performance with other ensemble techniques.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

A Study on Effective Adversarial Attack Creation for Robustness Improvement of AI Models (AI 모델의 Robustness 향상을 위한 효율적인 Adversarial Attack 생성 방안 연구)

  • Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.25-36
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.

Study on the Plan for Reduction of Credit Risk of Medium-size Construction Companies Preparing for Restructuring (구조조정에 대비한 중견건설사 신용리스크 저감방안에 관한 연구)

  • Lee, YunHong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.64-73
    • /
    • 2020
  • The government announced a plan for fund support to the enterprises with high possibility of recovery and early restructuring for the enterprises with low recovery by objectifying credit assessment system. Such announcement of government could be extended to restructuring risk of middle standing enterprises with low financial soundness by establishing the basis to prepare prompt restructuring by reinforcing the basis for restructuring through capital market. This research analyzed financial soundness based on the financial evaluation of bank by selecting 10 middle standing construction companies which focused on housing business in 2019, based on such analysis result, it was confirmed that there was a high possibility of restructuring risk. This research determined that there would be a decrease in growth rate of construction industry on the whole in 2020 due to fall of economic growth rate and reinforced real estate regulation, accordingly, there's a big possibility for middle standing construction companies with paid-in capital ratio due to its low possibility of maintenance of stable credit rating. This research established KCSI assessment model by utilizing the material of a reliable research institute in order for middle standing construction companies to evade restructuring risk, and indicated risk ratio differentiated per each item through a working-level expert survey. Such research result could suggest credit risk reduction method to middle standing construction company management staffs, and prepare a basis to evade restructuring risk.

PID Control Structure for Model Following Control (모델 추종 제어를 위한 PID 제어기법)

  • 이창호;김종진;하홍곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.138-142
    • /
    • 2004
  • This paper proposes the design of the model following control system using the PID control structure. PID control system became model following control by inserting new pre-compensator in order to improve control performance in discrete-time region. Gain of the PID controller needs to be readjusted when response of system changes due to disturbance or load fluctuation. Performance of control system improves by joining neural network to PID control system because performance of control system depends largely on each PID gain in PID control system. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Angular position of DC servo motor is selected as a plant in order to verify control performance in model following control. After it is applied to the position control system, it's performance is verified through computer experiment.

  • PDF

A Study on the Generation of Digital Elevation Model from IRS-1C Satellite Image Data (IRS-1C 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안기원;이효성;서두천;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 1999
  • The study aims to develope techniques for generating digital elevation model(DEM) from IRS-1C PAN stereo image data. The bundle adjustment technique was used to determine the satellite exterior orientation parameters as a function of along-track lines. The first degree of polynomial was selected as a function of satellite attitude and position for each scan line. To evaluate the DEM and orthoimage generated, the resulted three dimensional coordinates of the 16 elevation points were computed with the map coordinates. The elevation test showed that root mean square errors of the DEM elevation was about $\pm{16.66m}$ meters.

  • PDF

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Optimizing Performance and Energy Efficiency in Cloud Data Centers Through SLA-Aware Consolidation of Virtualized Resources (클라우드 데이터 센터에서 가상화된 자원의 SLA-Aware 조정을 통한 성능 및 에너지 효율의 최적화)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • The cloud computing paradigm introduced pay-per-use models in which IT services can be created and scaled on-demand. However, service providers are still concerned about the constraints imposed by their physical infrastructures. In order to keep the required QoS and achieve the goal of upholding the SLA, virtualized resources must be efficiently consolidated to maximize system throughput while keeping energy consumption at a minimum. Using ANN, we propose a predictive SLA-aware approach for consolidating virtualized resources in a cloud environment. To maintain the QoS and to establish an optimal trade-off between performance and energy efficiency, the server's utilization threshold dynamically adapts to the physical machine's resource consumption. Furthermore, resource-intensive VMs are prevented from getting underprovisioned by assigning them to hosts that are both capable and reputable. To verify the performance of our proposed approach, we compare it with non-optimized conventional approaches as well as with other previously proposed techniques in a heterogeneous cloud environment setup.

A Conceptual Framework of Supply Chain Management and Its Implication for Korean Firms (공급사슬관리를 활용한 한국기업의 물류혁신방안)

  • Cooper, Martha C.;Lambert, Douglas M.;Pagh, Janus D.;Moon, Hee-Cheol
    • International Commerce and Information Review
    • /
    • v.1 no.1
    • /
    • pp.11-32
    • /
    • 1999
  • 최근 물류분야의 학자들과 실무자들이 물류혁신의 한 기법으로 자주 거론하는 공급사슬관리(Supply Chain Management: SCM)의 정확한 개념은 무엇인가? 기존의 여러 문헌과 물류실무를 검토한 결과 특정한 공급사슬내의 조직내부 또는 조직간에는 일정한 수준의 경영활동 및 업무절차의 조정의 필요한 것으로 인식되고 있다. 본 연구에서는 향후 공급사슬관리와 관련된 의사결정에 도움을 줄 수 있는 개념적 모델을 제시하고, 이를 토대로 한국기업의 물류혁신을 위한 시사정과 앞으로의 연구과제에 대해 알아보고 있다.

  • PDF

Comparison of Loss Function for Multi-Class Classification of Collision Events in Imbalanced Black-Box Video Data (불균형 블랙박스 동영상 데이터에서 충돌 상황의 다중 분류를 위한 손실 함수 비교)

  • Euisang Lee;Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2024
  • Data imbalance is a common issue encountered in classification problems, stemming from a significant disparity in the number of samples between classes within the dataset. Such data imbalance typically leads to problems in classification models, including overfitting, underfitting, and misinterpretation of performance metrics. Methods to address this issue include resampling, augmentation, regularization techniques, and adjustment of loss functions. In this paper, we focus on loss function adjustment, particularly comparing the performance of various configurations of loss functions (Cross Entropy, Balanced Cross Entropy, two settings of Focal Loss: 𝛼 = 1 and 𝛼 = Balanced, Asymmetric Loss) on Multi-Class black-box video data with imbalance issues. The comparison is conducted using the I3D, and R3D_18 models.