• Title/Summary/Keyword: 모델링 차원

Search Result 2,298, Processing Time 0.033 seconds

A study on the digitalization of 3D Pen (3D펜의 디지털화에 대한 연구)

  • Kim, Jong-Young;Jeon, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.583-590
    • /
    • 2021
  • This paper is a study on the digitization of an analog 3D pen. The term digital implies features such as homeostasis, transformability, combinability, reproducibility, and convenience of storage. One device that produces a combination of these digital characteristics is a 3D printer, but its industrial use is limited due to low productivity and limitations with materials and physical characteristics. In particular, improvements are required to use 3D printers, such as better user accessibility owing to expertise and skills in modeling software and printers. Complementing this fact is the 3D pen, which is excellent in portability and ease of use, but has a limitation in that it cannot be digitized. Therefore, in order to secure a digitalization capability and ease of use, and to secure the safety of printing materials that pose controversial hazards during the printing process, research problems and alternatives have been derived by combining food, and digitization was demonstrated with a newly developed 3D pen. In order to digitize the 3D pen, a sensor in a structured device detects the motion of an analog 3D pen, and this motion is converted into 3D data (X-Y-Z coordinate values) through a spatial analysis algorithm. To prove this method, the similarity was confirmed by visualization using MeshLab version 1.3.4. It is expected that this food pen can be used in youth education and senior healthcare programs in the future.

Study on Damage Information Management Plan for Maintenance and Operation of River Facilities (하천시설 유지운영을 위한 손상정보 관리방안 연구)

  • Joo, Jae-Ha;Nam, Jeung-Yong;Kim, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • Recently, the rapid proliferation, introduction, and application of the fourth industrial revolution technology has emerged as a trend in the construction market. Building Information Model (BIM) technology is a multidimensional information system that forms the basis of the fourth industrial revolution technology. The river sector utilizing this information-based system is also being actively reviewed, for example, the current measures for maintenance. In recent years, active research and current work should be done to reflect the need for river experts to introduce BIM into the river field. In addition, the development of tools and support software for establishing various information systems is essential for the activation of facility maintenance information systems reflecting advanced technology and to establish and operate management plans. A study on the maintenance of river facilities involves using existing drawings to build a three-dimensional (3D) information model, check the damage utilizing it, and inform it, and utilize it as the data for maintenance reinforcement. This study involved determining a method to build a river facility without the existing information system and using the property maintenance information with 3D modeling to provide a more effective and highly utilized management plan to check maintenance operations and manage damages.

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

Deep Learning Based Pine Nut Detection in UAV Aerial Video (UAV 항공 영상에서의 딥러닝 기반 잣송이 검출)

  • Kim, Gyu-Min;Park, Sung-Jun;Hwang, Seung-Jun;Kim, Hee Yeong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Pine nuts are Korea's representative nut forest products and profitable crops. However, pine nuts are harvested by climbing the trees themselves, thus the risk is high. In order to solve this problem, it is necessary to harvest pine nuts using a robot or an unmanned aerial vehicle(UAV). In this paper, we propose a deep learning based detection method for harvesting pine nut in UAV aerial images. For this, a video was recorded in a real pine forest using UAV, and a data augmentation technique was used to supplement a small number of data. As the data for 3D detection, Unity3D was used to model the virtual pine nut and the virtual environment, and the labeling was acquired using the 3D transformation method of the coordinate system. Deep learning algorithms for detection of pine nuts distribution area and 2D and 3D detection of pine nuts objects were used DeepLabV3+, YOLOv4, and CenterNet, respectively. As a result of the experiment, the detection rate of pine nuts distribution area was 82.15%, the 2D detection rate was 86.93%, and the 3D detection rate was 59.45%.

Numerical Modeling for Region of Freshwater Influence by Han River Discharge in the Yeomha Channel, Gyeonggi Bay (경기만 염하수로에서의 한강 유량에 따른 담수 영향범위 수치모델링)

  • Lee, Hye Min;Song, Jin Il;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.148-159
    • /
    • 2021
  • This study estimates the region of freshwater influence (ROFI) by Han River discharge in the Yeomha channel, Gyeonggi Bay. A 3-D numerical model, which is validated for reproducibility of variation in current velocity and salinity, is applied in Gyeonggi Bay. Distance of freshwater influence (DOFI) is defined as the distance from the entrance of Yeomha channel to the point where surface salinity is 28 psu. Model scenarios were constructed by dividing the Han River discharge into 10 categories (200~10,000 m3/s). The relation equation between freshwater discharge and DOFI was calculated based on performing a non-linear regression analysis. ROFI in Yeomha channel expands from the southern sea area of Ganghwa-do to the northern sea area of Yeongheung-do as the intensity of Han River discharge increases. The discharge and DOFI are a proportional relationship, and the increase rate of DOFI gradually decreases as discharge increases. Based on the relation equation calculated in this study, DOFI in the Yeomha channel can be estimated through the monthly mean Han River discharge. Accordingly, it will be possible to respond and predict problems related to damage to water quality and ecology due to rapid freshwater runoff.

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

The Study on Factors to Improve the Intention to Share Knowledge Using KMS: Focusing on Technology Acceptance Model, Task Stress, Knowledge Share Climate (지식관리시스템을 활용한 지식공유 의도 향상에 대한 연구: 기술수용모델, 업무 스트레스, 공유 분위기를 중심으로)

  • Hwang, Inho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.6
    • /
    • pp.17-34
    • /
    • 2021
  • As knowledge management is recognized as an important factor for organizational performance, organizations are increasing their investment in knowledge management policies and technologies. The purpose of this study is to suggest positive and negative causes on the intention to share knowledge through a using knowledge management system(KMS) and to suggest the effect of organizational sharing climate. Research models and hypotheses were presented through previous studies, and 417 samples were obtained through the survey for employees of organizations that adopted a KMS. As a result of the analysis, usefulness and ease of use of the KMS had a positive effect on the intention to share knowledge, and task conflict and ambiguity had a negative effect. The knowledge sharing climate was found to be an antecedent for the technology acceptance model and task stress. In addition, task stress moderated the effect of usefulness and ease of use with the intention to share knowledge using KMS. The results suggested the direction to be pursued at the organizational level for the continuous use of KMS.

A Study on the Mitigation of Burnout and Knowledge Hoarding: Focusing on the Knowledge Sharing Culture and Person Organization Fit (조직 구성원의 직무소진 및 지식축적 완화에 대한 연구: 지식공유 문화와 개인조직 적합성을 중심으로)

  • Hwang, Inho
    • Korean small business review
    • /
    • v.43 no.4
    • /
    • pp.1-25
    • /
    • 2021
  • As knowledge management is recognized as a core value of organizations, organizations are increasing their investment in policies and technologies for knowledge management. However, since SMEs have relatively few resources to support knowledge sharing, which is the core of knowledge management, there is a possibility that continuous knowledge management will be difficult. This study suggests the negative motivation(job burnout) on the knowledge hoarding of SME employees and the conditions to be improved at the organizational level (shared goal, knowledge sharing culture, and person-organization fit). In this study, a hypothesis was presented through a study related to transaction theory to explain the stress in the relationship between the organization and the individual. This study collected samples through a questionnaire targeting workers of SMEs with knowledge management policies. In addition, the hypothesis was verified by performing structural equation modeling. As a result of the study, shared goal and knowledge sharing culture reduced knowledge hoarding through mitigating job burnout. In particular, person-organization fit moderated the relationship between shared goal, knowledge sharing culture, and job burnout. The study presents academic and practical implications in terms of suggesting factors to mitigate the knowledge hoarding of employees for continuous knowledge management of SMEs.

The Influence of Authentic Leadership on Intention to Share Knowledge Through Organization Identification and Organization Commitment: Analysis of the Moderating Effect of Reciprocal Feedback and Task Interdependence (진성 리더십이 조직 동일시와 조직 몰입을 통해 지식공유 의도에 미치는 영향: 상호피드백과 업무 상호의존성 조절효과 분석)

  • Hwang, Inho
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.269-285
    • /
    • 2021
  • As the systematic management of knowledge within an organization is recognized as a core factor for the continuous growth of an organization, organizations are increasing their interest in knowledge management. Knowledge management requires the active sharing of knowledge by insiders of the organization, but there are cases of failure due to the lack of participation of leaders and employees of the organization. The purpose of this study is to suggest a mechanism by which the authentic leadership of leaders in small and medium-sized enterprises(SME), which are relatively lacking in knowledge production capacity, leads to intention to share knowledge of employees. In addition, the study confirms that reciprocal feedback and task interdependence moderate the relationship between antecedent factors and intention to share knowledge. In this study, a research model was derived based on precedent research, and 272 samples were obtained by conducting a questionnaire survey on employees of SME that introduced a knowledge management policy. And, the study verified the hypothesis by applying structural equation modeling based on AMOS 22.0. The results of the study proved that authentic leadership has a positive effect on the intention to share knowledge through organization identification and organization commitment, and confirmed that reciprocal feedback and work interdependence moderate the relationship between knowledge sharing intentions and antecedent factors. This study suggests the mechanism by which the authentic behavior of the leaders of SMEs affects the knowledge sharing behavior of employees, and suggests that work cooperation strengthens the influence of the mechanism.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.