• Title/Summary/Keyword: 모델검증

Search Result 8,729, Processing Time 0.042 seconds

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

Determinants of Consumer Responses to Retail Out-of-Stocks (점포내 품절상황에서 소비자 반응행동유형별 결정요인)

  • Chun, Dal-Young;Choi, Jong-Rae;Joo, Young-Jin
    • Journal of Distribution Research
    • /
    • v.16 no.4
    • /
    • pp.29-64
    • /
    • 2011
  • Overview of Research: Product availability is one of important competences of store to fulfill consumer needs. If stock-outs which means a product what consumer wants to buy is not available occurs, consumer will face decision-making uncertainty that leads to consumer's negative responses such as consumer dissatisfaction on store. Stockouts was much studied in the field of academia as well as practice in other countries. However, stock-outs has not been researched at all in Marketing and/or Distribution area in Korea. The main objectives of this study are to find out determinants of consumer responses such as Substitute, Delay, and Leave(SDL) when consumer encounters out-of-stock situation and then to examine the effects of these factors on consumer responses. Specifically, this study focuses on situational characteristics(e.g., purchase urgency and surprise), store characteristics (e.g., product assortment and store convenience), and consumer characteristics (e.g., brand loyalty and store loyalty). Then, this study empirically investigates relationships these factors with consumers behaviors such as product substitution, purchase delay, and store switching.

    shows the research model of this study. To accomplish above-mentioned research objectives, the following ten hypotheses were proposed and verified : ${\bullet}$ H 1 : When out-of-stock situation occurs, purchase urgency will increase product substitution but will decrease purchase delay and store switching among consumer responses. ${\bullet}$ H 2 When out-of-stock situation occurs, surprise will decrease product substitution and purchase delay but will Increase store switching among consumer responses. ${\bullet}$ H 3 : When out-of-stock situation occurs, purchase quantities will increase product substitution and store switching but will decrease purchase delay among consumer responses. ${\bullet}$ H 4 : When out-of-stock situation occurs, pre-purchase plan will decrease product substitution but will increase purchase delay and store switching among consumer responses. ${\bullet}$ H 5 : When out-of-stock situation occurs, product assortment will increase product substitution but will decrease purchase delay and store switching among consumer responses. ${\bullet}$ H 6 : When out-of-stock situation occurs, competitive store price image will increase product substitution and purchase delay but will decrease store switching among consumer responses. ${\bullet}$ H 7 : When out-of-stock situation occurs, store convenience will increase product substitution but will decrease purchase delay and store switching among consumer responses. ${\bullet}$ H 8 : When out-of-stock situation occurs, salesperson services will increase product substitution but will decrease purchase delay and store switching among consumer responses. ${\bullet}$ H 9 : When out-of-stock situation occurs, brand loyalty will decrease product substitution but will increase purchase delay and store switching among consumer responses. ${\bullet}$ H 10 When out-of-stock situation occurs, store loyalty will increase product substitution and purchase delay but will decrease store switching among consumer responses. Analysis: Data were collected from 353 respondents who experienced out-of-stock situations in various store types such as large discount stores, supermarkets, etc. Research model and hypotheses were verified using multinomial logit(MNL) analysis. Results and Implications: is the estimation results of l\1NL model, and
    shows the marginal effects for each determinant to consumer's responses(SDL). Significant statistical results were as follows. Purchase urgency, purchase quantities, pre-purchase plan, product assortment, store price image, brand loyalty, and store loyalty were turned out to be significant determinants to influence consumer alternative behaviors in case of out-of-stock situation. Specifically, first, product substitution behavior was triggered by purchase urgency, surprise, purchase quantities, pre-purchase plan, product assortment, store price image, brand loyalty, and store loyalty. Second, purchase delay behavior was led by purchase urgency, purchase quantities, and brand loyalty. Third, store switching behavior was influenced by purchase urgency, purchase quantities, pre-purchase plan, product assortment, store price image, brand loyalty, and store loyalty. Finally, when out-of-stock situation occurs, store convenience and salesperson service did not have significant effects on consumer alternative responses.

  • PDF
  • A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

    • Kang, Ryeo-Eun;Yang, Sung-Byung
      • Journal of Intelligence and Information Systems
      • /
      • v.23 no.4
      • /
      • pp.169-196
      • /
      • 2017
    • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

    An Analysis on Factors Affecting Local Control and Survival in Nasopharvngeal Carcinoma (비인두암의 국소 종양 치유와 생존율에 관한 예후 인자 분석)

    • Chung Woong-Ki;Cho Jae-Shik;Park Seung Jin;Lee Jae-Hong;Ahn Sung Ja;Nam Taek Keun;Choi Chan;Noh Young Hee;Nah Byung Sik
      • Radiation Oncology Journal
      • /
      • v.17 no.2
      • /
      • pp.91-99
      • /
      • 1999
    • Propose : This study was performed to find out the prognostic factors affecting local control, survival and disease free survival rate in nasopharyngeal carcinomas treated with chemotherapy and radiation therapy. Materials and Methods : We analysed 47 patients of nasopharyngeal carcinomas, histologically confirmed and treated at Chonnam University Hospital between July 1986 and June 1996, retrospectively. Range of patients' age were from 16 to 80 years (median; 52 years). Thirty three (70$\%$) patients was male. Histological types were composed of 3 (6$\%$) keratinizing, 30 (64$\%$) nonkeratinizing squamous cell carcinoma and 13 (28$\%$) undifferentiated carcinoma. Histoiogicai type was not known in 1 patient (2$\%$). We restaged according to the staging system of 1997 American Joint Committee on Cancer Forty seven patients were recorded as follows: 71: 11 (23$\%$), T2a; 6 (13$\%$), T2b; 9 (19$\%$), 73; 7 (15$\%$), 74: 14 (30$\%$), and NO; 7 (15$\%$), Nl: 14 (30$\%$), N2; 21 (45%), N3: 5 (10%). Clinical staging was grouped as follows: Stage 1; 2 (4$\%$), IIA: 2 (4$\%$), IIB; 10 (21$\%$), III; 14 (30$\%$), IVA; 14 (30$\%$) and IVB; 5 (11$\%$). Radiation therapy was done using 6 MV and 10 MV X- ray of linear accelerator. Electron beam was used for the Iymph nodes of posterior neck after 4500 cGy. The range of total radiation dose delivered to the primary tumor was from 6120 to 7920 cGy (median; 7020 cGy). Neoadjuvant chemotherapy was performed with cisplatin +5-fluorouracil (25 patients) or cisplatin+pepleomycin (17 patients) with one to three cycles. Five patients did not received chemotherapy. Local control rate, survival and disease free suwival rate were calculated by Kaplan-Meier method. Generalized Wilcoxon test was used to evaluate the difference of survival rates between groups. multivariate analysis using Cox proportional hazard model was done for finding prognostic factors. Results: Local control rate was 81$\%$ in 5 year. Five year survival rate was 60$\%$ (median survival; 100 months). We included age, sex, cranial nerve deflicit, histologic type, stage group, chemotherapy, elapsed days between chemotherapy and radiotherapy, total radiation dose, period of radiotherapy as potential prognostic factors in multivariate analysis. As a result, cranial none deficit (P=0.004) had statistical significance in local control rate. Stage group and total radiation dose were significant prognostic factors in survival (P=0.000, P=0.012), and in disease free survival rates (P=0.003, P=0.008), respectively. Common complications were xerostomia, tooth and ear problems. Hypothyroidism was developed in 2 patients. Conclusion : In our study, cranial none deficit was a significant prognostic factor in local control rate, and stage group and total radiation dose were significant factors in both survival and disease free survival of nasopharyngeal carcinoma. We have concluded that chemotherapy and radiotherapy used in our patients were effective without any serious complication.

    • PDF

    The Ability of Anti-tumor Necrosis Factor Alpha(TNF-${\alpha}$) Antibodies Produced in Sheep Colostrums

    • Yun, Sung-Seob
      • 한국유가공학회:학술대회논문집
      • /
      • 2007.09a
      • /
      • pp.49-58
      • /
      • 2007
    • Inflammatory process leads to the well-known mucosal damage and therefore a further disturbance of the epithelial barrier function, resulting abnormal intestinal wall function, even further accelerating the inflammatory process[1]. Despite of the records, etiology and pathogenesis of IBD remain rather unclear. There are many studies over the past couple of years have led to great advanced in understanding the inflammatory bowel disease(IBD) and their underlying pathophysiologic mechanisms. From the current understanding, it is likely that chronic inflammation in IBD is due to aggressive cellular immune responses including increased serum concentrations of different cytokines. Therefore, targeted molecules can be specifically eliminated in their expression directly on the transcriptional level. Interesting therapeutic trials are expected against adhesion molecules and pro-inflammatory cytokines such as TNF-${\alpha}$. The future development of immune therapies in IBD therefore holds great promises for better treatment modalities of IBD but will also open important new insights into a further understanding of inflammation pathophysiology. Treatment of cytokine inhibitors such as Immunex(Enbrel) and J&J/Centocor(Remicade) which are mouse-derived monoclonal antibodies have been shown in several studies to modulate the symptoms of patients, however, theses TNF inhibitors also have an adverse effect immune-related problems and also are costly and must be administered by injection. Because of the eventual development of unwanted side effects, these two products are used in only a select patient population. The present study was performed to elucidate the ability of TNF-${\alpha}$ antibodies produced in sheep colostrums to neutralize TNF-${\alpha}$ action in a cell-based bioassay and in a small animal model of intestinal inflammation. In vitro study, inhibitory effect of anti-TNF-${\alpha}$ antibody from the sheep was determined by cell bioassay. The antibody from the sheep at 1 in 10,000 dilution was able to completely inhibit TNF-${\alpha}$ activity in the cell bioassay. The antibodies from the same sheep, but different milkings, exhibited some variability in inhibition of TNF-${\alpha}$ activity, but were all greater than the control sample. In vivo study, the degree of inflammation was severe to experiment, despite of the initial pilot trial, main trial 1 was unable to figure out of any effect of antibody to reduce the impact of PAF and LPS. Main rat trial 2 resulted no significant symptoms like characteristic acute diarrhea and weight loss of colitis. This study suggested that colostrums from sheep immunized against TNF-${\alpha}$ significantly inhibited TNF-${\alpha}$ bioactivity in the cell based assay. And the higher than anticipated variability in the two animal models precluded assessment of the ability of antibody to prevent TNF-${\alpha}$ induced intestinal damage in the intact animal. Further study will require to find out an alternative animal model, which is more acceptable to test anti-TNF-${\alpha}$ IgA therapy for reducing the impact of inflammation on gut dysfunction. And subsequent pre-clinical and clinical testing also need generation of more antibody as current supplies are low.

    • PDF

    Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

    • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
      • Journal of Intelligence and Information Systems
      • /
      • v.20 no.2
      • /
      • pp.73-92
      • /
      • 2014
    • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.

    The Marketing Effect of Loyalty Program on Relational Market Behavior : Focusing in Franchise Membership Fitness Club (로열티 프로그램이 고객 참여와 소비자-브랜드 관계에 기초한 관계형 시장 행동에 미치는 영향 : 프랜차이즈 회원제 휘트니스클럽을 대상으로)

    • Yoon, Kyung-Goo;Shin, Geon-Cheol
      • Journal of Distribution Research
      • /
      • v.17 no.2
      • /
      • pp.1-28
      • /
      • 2012
    • I. Introduction : The purpose of this study is to test empirically hypothetical causality among constructs used in previous studies to build the model of relational market behavior on customers' participation and consumer-brand relationship after introducing theories of relationship marketing, loyalty program, consumer-brand relationship, customers' participation in service marketing as previous studies with regard to relational market behavior, which Bagozzi(1995) and Peterson(1995) commented on constructs and definition suggested by Sheth and Parvatiyar (1995). For this purpose, loyalty program by the service provider, customers' participation and consumer-brand relationship as preceding variables explain relational market behavior defined by Sheth and Parvatiyar(1995). This study proposes that loyalty program as a tool of relationship marketing will be effective in that consumers' participation in marketing relationship results in a narrow range of choice(Sheth and Parvatiyar, 1995) because consumers think that their participation motive result in benefits(Peterson, 1995). Also, it is proposed that the quality of consumer-brand relationship explain the performance of relationship as well as the intermediary effect because the loyalty program could be evaluated based on relationship with customers. We reviewed the variables with regard to performance of relationship based on relation maintain in marketing literature, and then tested our hypotheses related to several performance variables including loyalty and intention of relation maintain based on the previous studies and constructs(Bendapudi and Berry, 1997 ; Bettencourt, 1997 ; Palmatier, Dant, Grewal and Evans, 2006 ; You Jae Yi and Soo Jin Lee, 2006). II. Study Model : Analyses about hypothetical causality were proceeded. The marketing effect of loyalty program on relational market behavior was empirically tested in study regarding a service provider. The research model in according to the path hypotheses (loyalty program ${\rightarrow}$ customers' participation ${\rightarrow}$ consumer-brand relationship ${\rightarrow}$ relational market behavior and loyalty program ${\rightarrow}$ consumer-brand relationship, and loyalty program ${\rightarrow}$ relational market behavior and customers' participation ${\rightarrow}$ consumer-brand relationship, and customers' participation ${\rightarrow}$ relational market behavior) proceeded as an activity for customer relation management was suggested. The main purpose of study is to see if relational market behavior could be brought as a result of developing relationship between consumers and a corporate into being stronger and more valuable when a corporate or a service provider try aggressively to build the relationship with customers (Bettencourt, 1997; Palmatier, Dant, Grewal and Evans, 2006; Sheth and Parvatiyar, 1995). III. Conclusion : The results of research into the membership fitness club, one of service areas with high level of customer participation (Bitner, Faranda, Hubbert and Zeithaml, 1997; Chase, 1978; Kelley, Donnelly, Jr. and Skinner, 1990) are as follows: First, causalities in according to path hypotheses were tested, after the preceding variables affecting relational market behavior and conceptual frame were suggested. In study, all hypotheses were supported as expected. This result confirms the proposition suggested by Sheth and Parvatiyar(1995), who claimed that intention of consumer and corporate to participate in marketing relationship brings high level of marketing productivity. Also, as a corporate or a service provider try aggressively to build relationship with customers, the relationship between consumers and a corporate can be developed into stronger and more valuable one (Bettencourt, 1997; Palmatier, Dant, Grewal and Evans, 2006). This finding supports the logic of relationship marketing. Second, because the question regarding the path hypothesis of consumer-brand relationship ${\rightarrow}$ relational market behavior are still at issue, the further analyses were conducted. In particular, there existed the mediating effects of consumer-brand relationship toward relational market behavior. Also, multiple regressions were conducted to see if which one strongly influences relational market behavior among specific question items with regard to consumer-brand relationship. As a result, the influence between items composing consumer-brand relationship and ones composing relational market behavior was different. Among items composing consumer-brand relationship, intimacy was an influence of sustaining relationship, word of mouth, and recommendation, intimacy and interdependence were influences of loyalty, intimacy and self-connection were influences of tolerance and advice. Notably, commitment among items measuring consumer-brand relationship had the negative influence with relational market behavior. This means that bringing relational market behavior is not consumer-brand relationship without personal commitment, but effort to build customer relationship like intimacy, interdependence, and self-connection. This finding confirms the results of Breivik and Thorbjornsen(2008). They reported that six variables composing the quality of consumer-brand relationship have higher explanation in regression model directly affecting performance of consumer-brand relationship. As a result of empirical analysis, among the constructs with regard to consumer-brand relationship, intimacy(B=0.512), interdependence(B=0.196), and quality of partner(B=0.153) had the effects on relation maintain. On the contrary, self-connection, love and passion, and commitment had little effect and did not show the statistical significance(p<0.05). On the other hand, intimacy(B=0.668) and interdependence(B=0.181) had the high regression estimates on word of mouth and recommendation. Regarding the effect on loyalty, explanation level of the model was high(R2=0.515), intimacy(0.538), interdependence(0.223), and quality of partner(0.177) showed the statistical significance(p<0.05). Furthermore, intimacy(0.441) had the strong effect as well as self-connection(0.201) and interdependence (0.163) had the effect on tolerance and forgive. And these three variables showed effects even on advice and suggestion, intimacy(0.373), self-connection(0.270), interdependence (0.155) respectively. Third, in study with regard to the positive effect(loyalty program ${\rightarrow}$ customers' participation, loyalty program ${\rightarrow}$ consumer-brand relationship, loyalty program ${\rightarrow}$ relational market behavior, customers' participation ${\rightarrow}$ consumer-brand relationship, customers' participation ${\rightarrow}$ relational market behavior, consumer-brand relationship ${\rightarrow}$ relational market behavior), the path hypothesis of customers' participation ${\rightarrow}$ consumer-brand relationship, was supported. The fact that path hypothesis of customers' participation ${\rightarrow}$ consumer-brand relationship was supported confirms assertion by Bitner(1995), Fournier(1994), Sheth and Parvatiyar(1995) about consumer relationship to participate in marketing relationship.

    • PDF

    The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

    • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
      • Journal of Intelligence and Information Systems
      • /
      • v.25 no.4
      • /
      • pp.1-33
      • /
      • 2019
    • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.