• 제목/요약/키워드: 모달 테스팅

검색결과 8건 처리시간 0.024초

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.293-298
    • /
    • 2008
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an Inconel pipe being used in nuclear power plants.

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1343-1347
    • /
    • 2006
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an inconel pipe being used in nuclear power plants.

  • PDF

주포 사격시험을 이용한 대형 함정의 모달테스트 (A Modal Testing of Large Naval Vessel Using Main Gun Firing Test)

  • 박미유;한형석;조흥기;김중길;임동빈;이민재
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2011
  • 유한요소해석을 통한 대상 구조물의 동특성 해석에 있어서 신뢰성 높은 실제 구조물의 동특성을 정확히 예측하는 해석결과는 얼마나 신뢰성이 높은 유한요소모델을 수립하는가하는 문제와 직결된다고 할 수 있다. 따라서 많은 경험과 노력을 통해 만들어진 모델을 대상으로 모달 테스팅을 통해 관심주파수대역에 걸쳐 모델을 검증하고, 이때 얻어진 데이터를 이용, 모델을 개선하는(Model updating) 작업을 거치게 된다. 본 연구에서는 이와 같이 중량과 크기의 제한으로 인하여 충격망치나 가진기로 가진하기 어려운 함정의 고유진동수 등을 얻기 위한 모달 테스팅 방법으로써 함정의 시운전 항목 중 하나인 주포 사격시험을 이용하여 그 결과와 가능성, 향후 진행방향에 대하여 고찰해 보았다.

마그네토스트릭션 효과를 이용한 비접촉 모달 테스팅 기법 (Noncontact Modal Testing Method Using Magnetostriction Effects)

  • 조승현;이호철;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.701-707
    • /
    • 2000
  • In this work, we propose to employ magnetostrictive sensors to develop a new non-contacting modal testing method. Specific applications are made in the modal testing of a beam in bending. The role of bias magnetic fields in measuring bending waves is addressed and an approximate analysis to explain the principle to measure bending signals is carried out. The measured modal data by the present method agree well with those by conventional methods using accelerometers.

  • PDF

진동을 고려한 복합적층 외팔평판의 최적적층설계 (Optimal Ply Design of Laminated Composite Cantilever plate Considering Vibration)

  • 구경민;노영희;김동영;홍도관;안찬우;한근조;박흥식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1660-1665
    • /
    • 2003
  • On this study, we improved the efficiency applying algorithm that is repeatedly using orthogonal array in discrete design space and filling a defect of gradient method in continuous design space. we showed optimal ply angle that maximized 1st natural frequency of CFRP laminated composite cantilever plate by each aspect ratio. A finite element analysis on the CFRP laminated composite cantilever plate using orthogonal array is carried out, and the results are compared with those obtained by modal testing.

  • PDF

자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅 (Torsional modal testing of a non-ferromagnetic shaft by magnetostrictive patch transducers)

  • 조승현;한순우;박찬일;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1159-1164
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy job to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

  • PDF

자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅 (Torsional Modal Testing of a Non-ferromagnetic Shaft by Magnetostrictive Patch Transducers)

  • 조승현;한순우;박찬일;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.879-885
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy task to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.