• Title/Summary/Keyword: 모달 응답

Search Result 73, Processing Time 0.032 seconds

Satellite finite element model updating for the prediction of the effect of micro-vibration (미소진동 영향성 예측을 위한 인공위성 유한요소모델 보정)

  • Lim, Jae Hyuk;Eun, Hee-Kwang;Kim, Dae-Kwan;Kim, Hong-Bae;Kim, Sung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.692-700
    • /
    • 2014
  • In this work, satellite FE (finite element) model updating for the prediction of the effect of micro-vibration is described. In the case of satellites launched in low earth orbit, high agility and more mission accomplishments are required by the customer in order to procure many images from satellites. To achieve the goal, many mechanisms, including high capacity wheels and antennas with multi-axis gimbals have been widely adopted, but they become a source of micro-vibration which could significantly deteriorate the quality of images. To investigate the effect due to the micro-vibration in orbit on the ground, a prediction is conducted through an integrated model coupling the measured jitter sources with FE (finite element) model. Before prediction, the FE model is updated to match simulation results with the modal survey test. Subsequently, the quality of FE model is evaluated in terms of frequency deviation error, the resemblance of mode shapes and FRFs (frequency response functions) between test and analysis.

A Study on Lip-reading Enhancement Using Time-domain Filter (시간영역 필터를 이용한 립리딩 성능향상에 관한 연구)

  • 신도성;김진영;최승호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.375-382
    • /
    • 2003
  • Lip-reading technique based on bimodal is to enhance speech recognition rate in noisy environment. It is most important to detect the correct lip-image. But it is hard to estimate stable performance in dynamic environment, because of many factors to deteriorate Lip-reading's performance. There are illumination change, speaker's pronunciation habit, versatility of lips shape and rotation or size change of lips etc. In this paper, we propose the IIR filtering in time-domain for the stable performance. It is very proper to remove the noise of speech, to enhance performance of recognition by digital filtering in time domain. While the lip-reading technique in whole lip image makes data massive, the Principal Component Analysis of pre-process allows to reduce the data quantify by detection of feature without loss of image information. For the observation performance of speech recognition using only image information, we made an experiment on recognition after choosing 22 words in available car service. We used Hidden Markov Model by speech recognition algorithm to compare this words' recognition performance. As a result, while the recognition rate of lip-reading using PCA is 64%, Time-domain filter applied to lip-reading enhances recognition rate of 72.4%.

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.