• Title/Summary/Keyword: 모달 응답

Search Result 73, Processing Time 0.045 seconds

A Study on the Optimal Position Determination of Middle Supporting Points to Maximize the First Natural Frequency of a Beam (보의 1차 고유진동수가 최대가 되는 중간지지점의 최적위치 선정에 관한 연구)

  • 안찬우;홍도관;김동영;최석창;박일수
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.89-95
    • /
    • 2001
  • This paper describes the natural frequencies obtained through FEA (Finite Element Analysis) and Numerical Analysis which uses the boundary conditions to each equation of motion and the consecutive conditions at each supporting point. And then. we studied on the optimal position determination of middle supporting points to maximize the natural frequency of a beam at 24 Models. We present the data of optimal condition for designing a beam.

  • PDF

Design of a Side Mirror for Passenger Vehicle Based on Vibration Characteristics (진동 특성을 고려한 승용차용 사이드 미러의 설계)

  • Son, Sang-Uk;Son, Kwon
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.703-713
    • /
    • 1999
  • A side mirror is an important safety tool with which the driver can observe objects out of sight. This paper presents an organized design technology for the side mirror of improved vibration characteristics. Resonance response to forced vibration is critical to observability through the mirror to be designed. This study aims at the reduction of vibration level by the modification of mirror structures and consequent effects are predicted by computer simulations. We used a three-dimensional solid modeling and the modal and frequency analysis ; Pro/Engineer is used as a solid modeler; Pro/Mechanica for vibration analysis. The simulation results are compared with those obtained in experiemnts to check the validity by the three-dimensional modeling. The design technique of side mirror has been established and found to be effective in vibration analysis of redesigned parts.

  • PDF

Transient Analysis of Composite Cylindrical Shells with Ring Stiffeners (링보강 복합재료 원통셸의 과도해석)

  • Kim, Yeong-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1802-1812
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure Loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The results are verified by comparison with FEM results.

Damage Value Calculation of Fuel Tank Considering Modal Characteristics (모달특성을 고려한 Fuel Tank의 손상도 계산)

  • Han, Woo-Sub;Park, Kwang-Seo;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.534-538
    • /
    • 2008
  • The vehicle system is exposed to random source in service. Therefore, it is important to consider dynamic effect of the system. But, fatigue analysis is traditionally performed by using time signal of loading. To obtain dynamic effect of resonance, we carried out resonance durability analysis with frequency response and the dynamic load on frequency domain. The study shows that the damage considering resonant frequency of fuel tank system can be effectively estimated.

  • PDF

Experiments on Temperature Effect on Air Cavity Resonance and Tire's Vibration Characteristics of a Radial Tire (온도 변화가 승용차용 레이디얼 타이어의 공기공동 공명 및 타이어의 진동특성에 미치는 영향에 관한 실험)

  • Kim, Yong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.102-110
    • /
    • 2008
  • It is well known that the acoustic cavity inside the tire-wheel assembly contributes to vehicle interior noise and ride comfort. In this paper, we performed acoustic and structural modal testings by varying the temperature ranging from $20^{\circ}\;to\;45^{\circ}C$ to investigate the effects of temperature on acoustic cavity resonance and structural vibration characteristics for unloaded and loaded tires. The testing has given us some findings, which are reported in this paper.

Free Vibration Analysis of the Cantilevered Circular Cylindrical Shells Combined with Circular Plates at Axial Positions (원판이 결합된 외팔 원통셸의 고유진동 특성)

  • 임정식;이영신;손동성
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.331-345
    • /
    • 1997
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial position(s) was completed and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of the plate and the shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis. The results shows good agreement with those of ANSYS and test results in frequencies and mode shapes. The method developed herein is likely to be used for the analysis of the free vibration of the clamped-free circular cylindrical shells with any kinds of lids such as hollow circular plates, conical shells, spherical shells, or semi-spherical shells.

  • PDF

Analysis of Vibration-Noise Characteristics of a Passenger Car (승용차의 진동 소음 특성 해석)

  • 성명호;이장무;김석현;박동철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.87-92
    • /
    • 1993
  • 본 연구에서는 반연성해석(Semi-coupling analysis) 즉 음향 응답이 구조와 음향 시스템의 모달 계수로 표현되는 방법과 구조-음향 연성계수를 이용한 소음저감의 예를 제시한다. 이전까지의 연성해석에서는 해석의 신뢰성을 위 하여 실험에서 구한 구조 모우드를 사용하였다. 그러나 설계단계에서 차실소 음을 예측하고 설계변경의 자료를 제시하기 위해서는 유한요소법을 이용한 예측이 필수적이다. 본 연구에서는 부분 구조 합성법, 주요 결합부에 상세 유한요소 모델의 정적해석등에 의한 등가모델링 기법, 감도해석을 이용한 결 합부 모델링기법을 이용한 유한요소법 구조모우드해석과 그 결과를 이용한 연성해석의 결과를 보여준다.

  • PDF

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Ground Vibration Tests of SmartUAV Airframe Structure (스마트무인기 기체구조물 지상진동시험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Jung-Jin;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.482-489
    • /
    • 2010
  • This paper describes the test procedure, instrumentation, verification methodology and the results of the ground vibration test(GVT) and force vibration test(FVT) of the SmartUAV aircraft to estimate experimentally dynamic characteristics of the aircraft. Bungee cords are used to emulate free-free boundary conditions of the test aircraft. The SmartUAV is excited by three shakers and one-hundred frequency response functions(FRF's) is measured. The FRF's are reduced and analyzed to identify the dynamics parameters of the SmartUAV. To extract modal parameters of the SmartUAV such as, natural frequencies and damping ratios, the poly-reference least square complex exponential method is used in the time domain. The mode shape coefficients are estimated with the least squares frequency domain method to identify the vibration modes. The FVT was performed by fixed sine frequency with three shakers on the x, y and z direction and vibration characteristics of structures and detail equipments are measured.

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.