• Title/Summary/Keyword: 모노펄스 수신기

Search Result 22, Processing Time 0.019 seconds

Data Decision Aided Timing Tracker in IR-UWB System using PPM (PPM 변조방식의 IR-UWB 시스템에서 데이터 결정방식을 이용한 타이밍 추적기)

  • Ko, Seok-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose a timing detector using suboptimal maximum likelihood method. The proposed method has an simple reference signal generator. Additionally, timing detector's gain of the proposed method is the same to Early-Late gate and ML method. We reveal that tracking range of time tracker is narrow because of using data-decision, that is, tracking range is ${\pm}0.06ns$ for the 4-order Gaussian monocycle with 0.7ns pulse width. Therefore we can find that searcher must have very accurate acquisition procedure. When estimating a performance of time tracker, we consider a jitter in transmitter and receiver's pulse generation process as well as background noise. By using computer simulation, we propose mean/variance of timing detector and tracking process. Also we consider a mobility in tracking process, i.e., timing error modeled ramp function. In order to propose a performance of time tracker, we consider only one correlation demodulator.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF