• Title/Summary/Keyword: 모기쿨롱 파괴 기준

Search Result 2, Processing Time 0.014 seconds

Experimental Simulations of Borehole Breakouts and Their Relationship to In Situ Stress Magnitudes (시추공벽 파쇄 모의 시험 및 현장 응력과의 관계 연구)

  • 송인선
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • We conducted laboratory simulations of deep vertical drilling into the earth's crust to induce borehole breakouts and investigated their potential use for estimating in situ stress magnitudes in Westerly granite and Berea sandstone. Our experiments consisted of two major stages, a series of triaxial tests and borehole-breakout formation tests under a wide range of far-field stresses. We derived the Mohr-Coulomb, Nadai and Mogi failure criteria from the triaxial test results. Each criterion was compared with the stress condition at breakout boundaries. We concluded that the well known Mohr-Coulomb criterion is not compatible with the stress condition at breakout failure. On the other hand, polyaxial (truly triaxial) failure criteria such as the Nadai criterion for Berea sandstone and the Mogi criterion for Westerly granite were much more suitable for predicting breakout failure zone. Such failure criteria appeared to enable the reliable estimation of the magnitude of one of two horizontal principal stresses if the other one is known.

  • PDF

A Basic Study on Borehole Breakout under Room Temperature and High Temperature True Triaxial Compression (상온 및 고온 하 진삼축압축실험을 이용한 시추공의 파괴 거동 기초 연구)

  • Yoon, Jeonghwan;Min, Ki-Bok;Park, Eui-Seob;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.559-572
    • /
    • 2020
  • This paper performs laboratory experiments for borehole stability considering temperature and true triaxial stress condition, and observes a thermo-mechanical behavior of the rock under stress and temperature conditions of deep underground. China yellow sandstone and Hwangdeung granite specimens were used to perform a true triaxial compression test. Mechanical tests were carried out under nine confining pressure conditions, and thermo-mechanical tests using granite samples were carried out under six confining pressure conditions at 60-100℃. In the mechanical tests, maximum principal stress at borehole breakout was proportional to intermediate principal stress. In the thermo-mechanical tests, it was confirmed that thermal stress is added to the stress field of the borehole with the increase in temperature, resulting in additional breakout progress. To analyze the results of the laboratory experiment, Mogi-Coulomb failure criterion was used. The results of traditional triaxial compression test on cylindrical specimens and borehole breakout under true triaxial compressions matched well with Mogi-Coulomb failure criterion.