• Title/Summary/Keyword: 면적강우량

Search Result 325, Processing Time 0.022 seconds

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors (위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구)

  • Kim, Wonkook;Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.209-218
    • /
    • 2013
  • The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

Landslide Types and Susceptibilities Related to Geomorphic Characteristics - Yeonchon-Chulwon Area - (지형특성에 따른 산사태의 유형 및 취약성 - 연천-철원지역을 대상으로 -)

  • 김원영;이사로;김경수;채병곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.115-130
    • /
    • 1998
  • An analysis on landslide types and susceptibilities associated with geomorphic characteristics has been conducted with 916 landslide inventories in Yeonchon-Chulwon District, where two day's heavy rainfall was concentrated on July, 1996. The precipitation during the 2 days, which is equivalent to 0.372 of event cofficient, can cause large landslides based on Olivier's equation. Sliding materials are dominantly composed of debris mixed with rock fragments and soil derived from colluvium and residual soils. 66% of the landslides are belong to debris flow md 23% are due to sediments flow, in accordance with the classification of sliding materials. Most of landslides(> 90%) are small and shallow, less than l00m in length and about 1m in depth, and classified as transitional type. Granite is more susceptible as much as 4.7 times than metamorphic rocks and 2.7 times than volcanic rocks, probably due to higher weathering grade of granite. The highest landslide frequency is concentrated on the areas between 200 and 300m in height and on the slopes between $10-20^{\circ}$ in dgree. More than 50% of landslides occurred under these geomorphic conditions. Consequently, colluviums and residual soils distributed on the gentle slopes are most susceptible to the landslides of the area.

  • PDF

A Case Study on the Analysis of Cause and Characteristics of a Landslide at the Sedimentary Rock Area (퇴적암 지역에서의 산사태 원인 및 특성 분석에 대한 사례연구)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.101-113
    • /
    • 2007
  • A landslide was occurred due to soil cutting for construction to expand the Donghae express highway in Dong-hae-City, Korea. The total area of the landslide was about $9,550m^2$ with 100 m of width and 87m of height. The landslide was occurred due to the internal factor of the unstable geological structure including the clay layer and the external factor of continuous heavy rainfalls. As the result of field instrumentation during the landslide, the horizontal displacement of the slope ground increases with increasing the accumulated rainfall by continuous rainfall during the rainy season. Also, the depth of sliding failure was decided by the horizontal displacement distribution during landslide occurrence. It makes sure that the horizontal displacement starts from the depth of sliding failure and the depth of sliding failure matches well with the location of the clay layer. As the slope stability analysis using Bishop's Simplified Method at the landslide area, the safety factor of slope during the rainy season was 0.53. This safety factor of slope was enough to trigger the landslide at this area. The depth of sliding failure obtained by analytical method matches well with the depth of the clay layer.

Rainfall Partitioning in a Small Catchment of a Monogenetic Volcano in Jeju Island: Case Study on Eoseungsaeng-oreum of Mount Halla (제주도 단성화산 소유역에서의 강우의 분배 - 한라산 어승생오름을 사례로 -)

  • An, Jung-Gi;Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.3
    • /
    • pp.212-223
    • /
    • 2008
  • The rainfall partitioning in a monogenetic volcano has been analysed using the hydrological data of a small catchment on Eoseungsaeng-oreum of Mount Halla and the meterological data of Eorimok Automated Weather System. The experimental catchment extends from 965 m to 1,169 m in altitude, and has an catchment area of $51,000\;m^2$ Eoseungsaeng-oreum is the scoria cone predominantly covered with Carpinus laxiflora and Quercus serrata. The analyzed periods are April 30 to September 12 and October 7 to November 19, 2007. The experimental catchment exhibits the total precipitation of 2,296.5 mm. Surface runoff amounts to 465 mm that is equivalent to 20.2% of the precipitation. By contrast, evapotranspiration accounts for 25.9% of the precipitation, and the remnant of 1,236.5 mm deep1y percolates underground through a basement. The rainy summer season, in particular, shows the highest deep percolation ratio of 62.2%. The deep percolation ratio of the experimental catchment is at 1east more two times than the ratio of a gneiss basin in Korea Peninsular. It has suggested that the experimental catchment is characterized by the higher portion of deep percolation in rainfall partitioning which reflects the highly permeable lithology in Jeju Island.

  • PDF

Development of Integrated Management System of Stormwater Retention and Treatment in Waterside Land for Urban Stream Environment (도시 하천 환경 관리를 위한 제외지 초기 강우 처리 및 저류 시설 종합 관리 시스템 개발)

  • Yin, Zhenhao;Koo, Youngmin;Lee, Eunhyoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.

A study of Assessment for Internal Inundation Vulnerability in Urban Area using SWMM (SWMM을 이용한 도시지역 내수침수 취약성 평가)

  • Shon, Tae-Seok;Kang, Dong-Ho;Jang, Jong-Kyung;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.105-117
    • /
    • 2010
  • The topographical depressions in urban areas, the lack in drainage capability, sewage backward flow, road drainage, etc. cause internal inundation, and the increase in rainfall resulting from recent climate change, the rapid urbanization accompanied by economic development and population growth, and the increase in an impervious area in urban areas deteriorate the risk of internal inundation in the urban areas. In this study, the vulnerability of internal inundation in urban areas is analyzed and SWMM model is applied into Oncheoncheon watershed, which represents urban river of Busan, as a target basin. Based on the results, the representative storm sewers in individual sub-catchments is selected and the risk of vulnerability to internal inundation due to rainfall in urban streams is analyzed. In order to analyze the risk and vulnerability of internal inundation, capacity is applied as an index indicating the volume of a storm sewer in the SWMM model, and the risk of internal inundation is into 4 steps. For the analysis on the risk of internal inundation, simulation results by using a SMMM model are compared with the actual inundation areas resulting from localized heavy rain on July 7, 2009 at Busan and comparison results are analyzed to prove the validity of the designed model. Accordingly, probabilistic rainfall at Busan was input to the model for each frequency (10, 20, 50, 100 years) and duration (6, 12, 18, 24hr) at Busan. In this study, it suggests that the findings can be used to preliminarily alarm the possibility of internal inundation and selecting the vulnerable zones in urban areas.

Analysis of Short-term Runoff Characteristics of CAT-PEST Connected Model using Different Infiltration Analysis Methods (CAT-PEST 연계 모형의 침투 해석 방법에 따른 단기 유출 특성 분석)

  • Choi, Shinwoo;Jang, Cheolhee;Kim, Hyeonjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.26-41
    • /
    • 2016
  • Catchment Hydrologic Cycle Assess Tool (CAT) is a model for hydrologic cycle assessment based on physical parameters. In this study, CAT was applied for short-term runoff simulation and connected with model-independent parameter estimation (PEST) for auto-calibrating parameters. The model performance was compared with HEC-HMS, which is widely used for short-term runoff simulation. The study area is the Pangyo Watershed ($22.9km^2$), which includes the Unjung-Cheon and Geumto-Cheon tributaries of the Tan-Cheon stream. Simulation periods were selected from six rainfall events of a two-year period (2006-2007). For the runoff simulation, CAT was applied using three types of infiltration methods (excess rainfall, Green and Ampt and Horton). Sensitivity analysis was carried out to select the parameters and then CAT was optimized using PEST. The model performance of HEC-HMS and CAT-PEST for the rainfall events were within an acceptable limit with Nash Sutcliffe efficiencies (NSE) of 0.63-0.91 and 0.42-0.93, respectively. The simulation results of HEC-HMS have high accuracy in the case of rainfall events that have a sensitive relationship between initial soil moisture conditions and runoff characteristics. The results of CAT-PEST indicated the possibility of reflecting a real runoff system using various physical parameters.

Influences of Forest Environmental Factors on Turbidity of Stream Water (산림환경인자가 계류수의 탁수화에 미치는 영향)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.574-578
    • /
    • 2012
  • This study was carried out to clarify the influences of forest environmental factors on turbidity of Stream water on three stands (Castanea crenata, Pinus densiflora and Plantation Land) of small watershed in Samgyeri Naedong-myeon Jinju-si Gyeongsangnam-do. The relationship between turbidity and forest environmental factors was a positive correlation at 1% level with chromaticity, suspended solid, sediment runoff erosion, slope, rainfall intensity, preceding dry days, watershed area and stream length and at 5% level with accumulative rainfall. The important factors that affected turbidity in small watershed showed in order of preceding dry days, rainfall intensity, stream length, chromaticity and suspended solid. In the stepwise regression between turbidity and forest environmental factors, the estimation equation is as follow; Y=-28.125+0.047x (suspended solid)+0.058x (chromaticity)+1.518x (rainfall intensity)+0.264x (stream length)+1.837x (preceding dry days). The results indicates that dangerous areas of landslide and soil runoff by land use could be applied to the mitigation measures such as afforestation, erosion check dam and revetment for erosion control and water quality management in small watershed.

Simulation of sediment reduction effects of VFS in uplands of Saemangeum watershed (새만금유역 밭경지 초생대 유사저감효과 모의)

  • Lee, Seul Gi;Jang, Jeong Ryeol;Choi, Kyung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.535-542
    • /
    • 2018
  • The study was intended to simulate the sediment reduction effects of the Vegetative Filter Strip (VFS) in uplands of Saemangeum watershed through VFSMOD-W model application. The model was calibrated by using the field data and the simulation scenarios were designed based on the investigation of uplands characteristics in Saemangeum watershed. The simulation scenarios were considered various size and slope of uplands including 1 ha, 5 ha, 10 ha of field size with width-length ratio of 1 : 1 having 7% and 15% of slopes under the daily rainfall of 50 mm, 100 mm, 150 mm, and 200 mm in order to mimic the different fields conditions. The effluent reduction ranged from 2.9~13.5% and 2.9~12.1% for runoff, and 33.8~97.0% and 27.1~85.9% for sediment under the field's slope of 7% and 15%, respectively. The VFS reduction effects showed different degree of influence from field size, slope, rainfall amounts. Based on the simulated results, the sediment contributing non-point source pollution expected to be reduced in the condition of VFS constructed 10% of fields in outlet of less than 10 ha of uplands having less than 15% of the slope.

Optimization of PRISM parameters using the SCEM-UA algorithm for gridded daily time series precipitation (시계열 강수량 공간화를 위한 SCEM-UA 기반의 PRISM 매개변수 최적화)

  • Kim, Yong-Tak;Park, Moonhyung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.903-915
    • /
    • 2020
  • Long-term high-resolution hydro-meteorological data has been recognized as an essential element in establishing the water resources plan. The increasing demand for spatial precipitation in various areas such as climate, hydrology, geography, ecology, and environment is apparent. However, potential limitations of the existing area-weighted and numerical interpolation methods for interpolating precipitation in high altitude areas remains less explored. The proposed PRISM (Precipitation-Elevation Regressions on Independent Slopes Model) model can produce gridded precipitation that can adequately consider topographic characteristics (e.g., slope and altitude), which are not substantially included in the existing interpolation techniques. In this study, the PRISM model was optimized with SCEM-UA (Shuffled Complex Evolution Metropolis-University of Arizona) to produce daily gridded precipitation. As a result, the minimum impact radius was calculated 9.10 km and the maximum 34.99 km. The altitude of coastal weighted was 681.03 m, the minimum and maximum distances from coastal were 9.85 km and 38.05 km. The distance weighting factor was calculated to be about 0.87, confirming that the PRISM result was very sensitive to distance. The results showed that the proposed PRISM model could reproduce the observed statistical properties reasonably well.