• Title/Summary/Keyword: 면내강성

Search Result 66, Processing Time 0.02 seconds

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Ultimate Strength Analysis of Connections of Floating Pendulum Wave Energy Converter (부유식 진자형 파력발전장치의 연결부 최종강도해석)

  • Sohn, Jung Min;Cheon, Ho Jeong;Shin, Seung Ho;Hong, Key Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • A floating offshore structure has high tendency to occur the buckling when compressive, bending and shear loads applied. When the buckling is occurred, in-plane stiffness of structure is remarkably decreased. And it has a harmful effect on the local structural strength as well as global structural strength. In the present study, it has been investigated the ultimate strength of tubular members which is located between a floater and a damping plate of the floating pendulum wave energy converter. Nonlinear finite element method is conducted using the initial imperfection according to 1st buckling mode which is obtained from the elastic buckling analysis. It is also noted the ultimate bending strength characteristic varying with a diameter, thickness and stiffeners of the tubular member.

Tensile Properties of CERP Composite with Different Resin Composition under Cryogenic Temperature (극저온 환경에서 탄소섬유강화 복합재료의 수지조성변화에 따른 인장 물성 측정)

  • Kim, Myung-Gon;Kang, Sang-Guk;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • In this study, carbon fiber reinforced polymeric (CFRP) composites with different resin composition were manufactured and resin formulation in composite materials were presented through tensile tests for cryogenic use. Thermo-mechanical cyclic loading (up to 6 cycles) was applied to CFRP unidirectional laminate specimens from room temperature to $-150^{\circ}C$. Tensile tests were then performed at $-150^{\circ}C$ using an environmental test chamber. In addition, matrix-dominant properties such as the transverse and in-plane shear characteristics of each composite model were measured at $-150^{\circ}C$ to examine the effects of resin formulation on their interfacial properties. The tensile tests showed that the composite models with large amounts of bisphenol-A epoxy and CTBN modified rubber in their resin composition had good mechanical performance at cryogenic temperature (CT).

Experimental and Analytical Studies on the Non-Linear behaviors of Pre-Stressed Steel H-Beams (프리스트레스트 H형강 거더의 비선형 거동에 대한 실험적 및 이론적 연구)

  • Kim, Moon-Young;Kim, Nak-Kyung;Oh, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.359-366
    • /
    • 2019
  • Experimental and analytical studies on the behavioral characteristics of a pre-stressed (PS) steel girder are conducted to investigate the effects of deviators on the non-linear inelastic properties of the PS system. In this regard, 4 test specimens consisting of a steel H-beam, a straight cable with eccentricity, anchorages, and deviators are built and failure tests are performed under two-point loading. In addition, in-plane elastic deformation theories for the PS system without a deviator, and with three deviators at regular intervals are analytically formulated and solved using a symbolic calculation technique. To verify the validity of the experimental and the proposed analytical theories, the results obtained using FEM models composed of beam elements, rigid beam elements, and truss cable elements, are compared to the experimental results and the analytical solutions. As a result, it is determined that externally installed un-bonded deviators inhibit flexural deformation of the deformed beam to such an extent that their elastic stiffness, and failure strength are significantly improved compared to those of the PS system without deviators.

Bending Effect of Laminated Plates with a Circular Hole Repaired by Single-Sided Patch Based on p-Convergent Full Layerwise Model (p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과)

  • Woo, Kwang-Sung;Yang, Seung-Ho;Ahn, Jae-Seok;Shin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.463-474
    • /
    • 2009
  • Double symmetric patch repair of existing structures always causes membrane action only, however, in many cases this technique is not practical. On the other hand, the bending stiffness of the patch and the skin increases as tensile loading is increased and affects the bending deformation significantly in the case of single-sided patch repair. In this study, the p-convergent full layerwise model has been proposed to determine the stress concentration factor in the vicinity of a circular hole as well as across the thickness of plates with single-sided patch repair. In assumed displacement field, the strain-displacement relations and 3-D constitutive equations of a layer are obtained by the combination of 2-D and 3-D hierarchical shape functions. The transfinite mapping technique has been used to represent a circular boundary and Gauss-Lobatto numerical integration is implemented in order to directly obtain stresses occurred at the nodal points of each layer without other extrapolation techniques. The accuracy and simplicity of the present model are verified with comparison of the previous results in literatures using experiment and conventional 3-D finite element. Also, the bending effect has been investigated with various patch types like square, circular and annular shape.

Effect of Glass Fiber-Reinforced Polymer (GFRP) Shear Connector's Shape on Inplane Shear Strength of Insulated Concrete Sandwich Panels (유리섬유복합체를 사용한 전단연결재 형상에 따른 중단열 벽체의 면내전단내력)

  • Jang, Seok-Joon;You, Young-Chan;Kim, Ho-Ryong;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.9-17
    • /
    • 2013
  • This paper describes an experimental program to investigate the shear behavior of insulated concrete sandwich panels (CSPs) with different types of GFRP shear connector. The study included testing of 13 insulated CSP specimens with two types of surface conditions for extruded polystyrene (XPS) insulation and various shapes of shear connectors. All specimens were loaded in direct shear by means of push-out and were consist of three concrete panels, two insulation layer and four rows of GFRP shear connectors. Load-relative slip between concrete panel and insulation response of CSP specimens has been established through push-out shear test. Test results indicate that the surface condition of insulation has a significant effect on the bond strength between concrete panel and insulation. The specimen used XPS foam with 10mm deep slot shows higher bond strength than those used XPS foam with meshed surface. Corrugated GFRP shear connectors show equivalent strength to grid GFRP shear connectors. Cross-sectional area and embedded length of shear connector have a notable effect on overall response and inplane shear strength of the CSP specimens.