• Title/Summary/Keyword: 멘션 페어

Search Result 2, Processing Time 0.016 seconds

Coreference Resolution for Korean using Mention Pair with SVM (SVM 기반의 멘션 페어 모델을 이용한 한국어 상호참조해결)

  • Choi, Kyoung-Ho;Park, Cheon-Eum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.4
    • /
    • pp.333-337
    • /
    • 2015
  • In this paper, we suggest a Coreference Resolution system for Korean using Mention Pair with SVM. The system introduced in this paper, also be able to extract Mention from document which is including automatically tagged name entity information, dependency trees and POS tags. We also built a corpus, including 214 documents with Coreference tags, referencing online news and Wikipedia for training the system and testing the system's performance. The corpus had 14 documents from online news, along with 200 question-and-answer documents from Wikipedia. When we tested the system by corpus, the performance of the system was extracted by MUC-F1 55.68%, B-cube-F1 57.19%, and CEAFE-F1 61.75%.

Korean Coreference Resolution using the Deep Learning based Mention Pair Model (딥 러닝 기반의 멘션 페어 모델을 이용한 한국어 상호참조해결)

  • Park, Cheon-Eum;Choi, Gyeong-Ho;Lee, Chang-Ki
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.824-827
    • /
    • 2015
  • 최근 자연어처리에 딥 러닝이 적용되고 있다. 딥 러닝은 기존의 기계학습 방법들과 달리, 자질 추출 및 조합 등과 같이 사람이 직접 수행해야 했던 부분들을 자동으로 처리할 수 있는 장점이 있다. 본 논문에서는 기존 상호참조해결에 적용했던 SVM 대신 딥 러닝을 이용할 것을 제안한다. 실험결과, 딥 러닝을 이용한 시스템의 성능이 57.96%로 SVM을 이용한 것보다 약 9.6%만큼 높았다.