• Title/Summary/Keyword: 메트랩/시뮬링크

Search Result 2, Processing Time 0.019 seconds

Development of MATLAB/Simulink Modular Simulation Toolbox for Space Shuttle Main Engine (MATLAB/Simulink 모듈화 기반 우주왕복선 주엔진 시뮬레이션 툴박스 개발)

  • Cho, Woosung;Cha, Jihyoung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.50-60
    • /
    • 2019
  • This paper introduces the development of a toolbox for the Space Shuttle Main Engine(SSME) based on MATLAB/Simulink. A mathematical model of rocket engine creation and validation can be a complex process, the development of a rocket engine toolbox simplifies this process, thereby facilitating engine performance optimization as well as new design development. The mathematical modeling of the SSME dealt with in this paper is formed by 32 first-order differential equations derived from seven governing equations. We develop the toolbox for the SSME classifying each module according to the engine components. Further, we confirm the validity of the toolbox by comparing the results of the simulation obtained using the toolbox with those obtained using the original simulation of the engine.

Simulation and Analysis of Dynamic Characteristics of a Turbo-shaft Engine (터보 축 엔진의 동적특성 해석 및 시뮬레이션)

  • Kim, Se-Hyun;Kim, Hae-Dong;Park, Sung-Su;Yoon, Sug-Joon;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-318
    • /
    • 2007
  • A dynamic simulation of a turbo-shaft engine was performed for analysis of transient-state and engine-starting characteristics using the MATLAB/SIMULINKTM. The turbo-shaft engine was modelled based on thermodynamic and rotor dynamic relations. The analysis of engine starting characteristics was performed by monitoring the rate of the pressure, temperature and mechanical torque changes along the engine stations by the torque input generated from the accessary power unit and transmitted to the power turbine. The simulation of the transient-state characteristics of the engine was performed under fuel flow rate increase from the steady-state condition. For the future study, engine control unit will be added to the basic turbo-shaft engine model to enhance capability of engine performance simulation.

  • PDF