• Title/Summary/Keyword: 메탄+프로판

Search Result 76, Processing Time 0.025 seconds

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용하는 프로판 분해에 의한 수소 생산)

  • Yoon, Yong-Hee;Lee, Seung-Chul;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-112
    • /
    • 2007
  • 유동층 반응기를 이용한 프로판의 촉매 분해는 $CO_2$를 방출하지 않고 수소를 생성하는 새로운 방식이다. 카본블랙을 이용한 프로판 분해는 메탄보다 상대적으로 분해가 잘되며, 같은 온도에서 전환률이 높기 때문에 수소 생성량이 더 많다. 촉매로 사용된 카본블랙은 반응 중 생성되는 탄소의 침적에도 불구하고 8시간 이상 촉매의 활성이 유지되어 전환율이 일정하게 유지되었다. 프로판 촉매 분해 실험은 상압에서 600 ${\sim}$ $800^{\circ}C$ 온도 변화 실험을 수행하였고, 가스 유속 변화는 2.0 ${\sim}$ $4.0U_mf$에서 실험 조건 변화에 따른 실험을 하였다. 온도, 유속 변화에 따른 생성 가스의 몰분율과 프로판 전환율을 분석하였다. 프로판 분해에 의해 생성된 기체는 수소뿐만 아니라 메탄, 에틸렌, 에탄, 프로필렌과 분해되지 않은 프로판이 배출되었다. 수소를 제외한 여타 가스들은 고온에서 실험을 할수록 몰비가 줄어들었다. 고온에서 프로판의 전환율과 수소 수득률이 증가하였다. 프로판 분해 실험 전후의 카본블랙 표면의 변화는 FE-TEM으로 관측하였다.

  • PDF

Phase Equilibria of Hydrates in Porous Media: Effect of Pore size and Salinity (다공성 매질에서의 하이드레이트 상평형 측정: 기공크기 및 염의 영향)

  • Lee, Seung-Min;Cha, In-Uk;Lee, Ju-Dong;Seo, Yong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.545-548
    • /
    • 2009
  • 최근 천연가스 개발의 중요성이 대두되면서 심해저 퇴적층에 존재하고 있는 천연가스 하이드레이트 개발에 많은 연구가 진행되고 있다. 본 연구에서는 심해저 퇴적층에 부존하는 가스 하이드레이트 조건과 유사하게 하기위해 3 wt% 농도의 염수를 다공성 실리카 젤 기공에 넣어 사용하였다. 기공의 직경에 따른 영향을 알아보기 위해 기공 직경이 각각 6.0, 15.0, 30.0 nm인 실리카 젤을 사용하여, 천연가스 주성분인 에탄, 프로판, 메탄+프로판 하이드레이트의 3상 (H-Lw-V) 평형을 측정하였다. 그 결과 기공의 크기가 작아질수록 각각의 벌크 상태의 에탄, 프로판, 메탄+프로판 하이드레이트에 비해 하이드레이트의 평형조건이 온도는 낮아지고 압력이 높아지는 저해효과가 커짐을 알 수 있었다. 실험값으로 부터 기공 내의 물과 하이드레이트상 사이의 계면장력 값을 Gibbs-Thomson식에 의해 구할 수 있으며, 열역학 계산을 통하여 실험값과 비교하였다. 본 연구에서 얻어진 결과는 심해저 천연가스 개발, 이산화탄소 심해저장 등의 가스 하이드레이트 응용 연구에 유용한 기초 자료가 될 것이다.

  • PDF

Application of Thermal Plasma for Production of Hydrogen and Carbon Black from Direct Decomposition of Hydrocarbon (탄화수소의 직접분해로부터 수소와 카본블랙을 생성하기 위한 열플라즈마의 응용)

  • Lee, Tae-Uk;Nam, Won-Ki;Baeck, Sung-Hyeon;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2007
  • Direct decomposition of hydrocarbon (methane, propane) was studied using a thermal plasma to produce high purity hydrogen and carbon black. Thermodynamic equilibrium compositions were calculated based on the minimization of Gibb's free energy, and decomposition experiments were performed on the basis of calculation results. The purity of hydrogen was found to be depended strongly on the flow rate of hydrocarbon. The decomposition conditions for high purity hydrogen were investigated. The purity of hydrogen produced from methane decomposition was higher than that from propane. In the case of propane, it was investigated that by products such as methane, acetylene, and ethane etc., by radical recombination under thermal plasma were produced more than that of methane. Produced carbon blacks were characterized by material analyses, such as XRD, Raman spectroscopy, SEM, and particle size analysis. In both methane and propane decompositions, well-crystallized carbon blacks were produced and showed uniform and sphere-like morphologies. The size of carbon black synthesized from methane was observed to be smaller than that from propane.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

Hydrogen Production from hydrocarbon by carbon black decomposition (탄화수소류로부터 카본블랙에 의한 수소생산)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Lee, Jong-Dae;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.638-641
    • /
    • 2005
  • 수소는 자원이 무한하고 청결한 에너지이다. 수소는 무공해 청정 대체연료로 사용될 수 있을 뿐만 아니라 풍부한 자원으로부터 얻을 수 있다. 수소에너지는 물을 분해하여 얻거나 화석연료를 수증기개질 또는 부분산화 시킴으로써 얻을 수가 있다. 수소에너지는 1차 에너지를 변환시켜 얻을 수 있는 2차 에너지로서 환경에 대한 부하가 거의 없어 향후 화석연료를 대체할 수 있는 가장 가능성이 높은 에너지이며, 연료전지의 상용화를 앞두고 있어 중요성이 더욱 증대되고 있다. 수소를 생산하는 방법 중 가장 이상적인 방법으로는 물분해함으로써 수소를 제조하는 방법이 있다. 그러나 물분해에 의한 수소생산은 제조비용이 비싸 경제성이 떨어진다는 점과 수소의 대량생산에 필요한 기술확보가 여의치 않아 어렵다. 그러므로 수소를 저 비용으로 대량 생산할 수 있는 수소 제조 기술의 확보가 선행되어야 할 것이다. 현재 상용화되어 있는 수소제조방법은 거의 석유나 천연가스의 수증기 개질에 의한 수소 제조 방법이다. 그러나 이러한 방법은 유해 환경 물질인 CO나 $CO_2$를 배출하는 단점을 지니고 있다. 이러한 단점을 보완키 위한 수소 제조공정의 대안 중 하나는 탄화수소연료의 수소와 탄소로의 직접분해에 의한 수소생산이다. 이 중 원하는 생성물인 수소 외에 부산물이 카본이 동시에 얻을 수 있는 메탄분해에 의한 수소생산방법은 생산된 수소의 약 15%만 연소시킴으로서 필요한 에너지를 공급할 수 있으며, 동시에 지구온난화의 주범인 CO 또는 $CO_2$가 생성되지 않는 장점이 있다. 하지만 메탄을 분해하기 위해서는 매우 높은 에너지가 필요로 하게 된다. 이에 반해 프로판은 메탄보다 낮은 열원에서 분해할 수 있는 장점을 지니고 있다. 본 연구에서는 메탄보다 분해하기 쉬운 프로판을 직접 분해하여 수소를 생산하고자 하였다. 프로판 직접분해반응는 $500\sim750^{\circ}C$의 온도 범위에서 이루어 졌으며, 촉매로서는 국내에서 생산되는 상용촉매인 카본블랙을 이용하였다.

  • PDF

Comparison of Dynamic Characteristics of Methane/Air and Propane/Air Premixed Flames with Ultrasonic Standing Wave (정상초음파가 개재하는 메탄/공기 및 프로판/공기 예혼합화염의 동역학적 특성 비교)

  • Kim, Min Cheol;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An experimental results on the dynamic characteristics of hydrocarbon/air premixed flames with ultrasonic standing waves are presented and compared. Images of the propagating flames were acquired by using a high-speed camera, and the flame behavior of methane/air and propane/air premixed flame were closely scrutinized through the image post-processing. At the fuel-lean conditions, the flame propagation velocity increased due to the intervention of the ultrasonic standing wave and vice versa at the fuel-rich conditions.

A Study on the Minimization of the Refrigeration Power Consumptions Through the Determination of Demethanizer Top Pressure in the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정에서 최적의 탈메탄탑의 운전압력 결정을 통한 냉동 소요동력 최소화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1032-1037
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream was partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream was cooled further and partially condensed through a turbo-expander. The power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream was cooled by Joule-Thomson expansion valve and was fed to the middle section of the demethanizer. Recovery percent of ethane for feed natural was set to 80% and methane to ethane molar ratio was fixed as 0.0119. On the other hand, some of the cold heat could be recovered by splitting the feed stream and by exchanging heat with side reboiler in order to reduce the heat duty in the propane refrigeration cycle.

Solar Steam Reforming of Methane utilizing Solar Simulator (Solar Simulator를 이용한 프로판의 수증기 개질 반응)

  • Do, Han-Bin;Jang, Jong-Tak;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.259-261
    • /
    • 2009
  • Solar simulator를 이용한 프로판의 수증기 개질은 집광된 태양에너지를 이용하기 위한 목적으로 수행되었다. 본 연구에서는 이와 같은 태양열에너지의 화학적 축열을 실시하기 위해 Solar Simulator를 이용한 메탄의 수증기 개질을 연구하였다. 태양열 모사 램프로 1.24kW급 Xenon-arc lamp를 사용하였다. 반응기는 앞면의 Quartz window와 Absorber로 구성되어 있다. 램프의 빛은 Quartz window를 통하여 촉매층에 직접적으로 방사된다. 프로판의 수증기개질 반응은 고온에서 일어나기 때문에 열에 강한 SiC로 만들어진 Ceramic foam을 Absorber로 사용하였다. 촉매는 Absorber에 Wash-coat하여 사용하였으며, 담지된 촉매는 Ni을 활성성분으로 하는 ICI 46-6와 귀금속 촉매인 Ru/$Al_2O_3$를 사용하였다. 반응기는 SUS 재질로 제작되었으며, 반응기 외부는 Insulation을 하여 열손실을 감소시켰다. Propane과 Steam의 비율은 S/C ratio를 3으로 하여 실험하였다. 실험은 온도와 촉매에 따른 Solar Steam reforming의 반응특성을 분석하였다.

  • PDF

An Optimization Study on the NGL Recovery Process Using Turbo-expander (터보 팽창기를 활용한 NGL 회수공정 최적화에 대한 연구)

  • Kim, Yu-Mi;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1473-1478
    • /
    • 2011
  • In this study, simulation and optimization works for a demethanizer column have been performed to obtain ethane and heavier products from a pretreated natural gas stream. Pretreated natural gas feed stream is partially condensed after being precooled by exchanging heat with demethanizer top vapor stream and by using an external refrigeration cycle with a propane refrigerant. Vapor stream is furtherly cooled and partially condensed through a turbo-expander and the power generated from the expansion of turbo-expander was delivered to the compressor for the residue gas compression. Liquid stream is being cooled by Joule-Thomson expansion valve and is fed to the middle section of the demethanizer. Ethane recovery percent for feed natural gas was set to 75% and methane to ethane molar ratio was fixed as 0.015. Propane refrigeration heat duty was reduced by splitting the feed stream and to exchange heat with side reboiler.

Hydorgen Production by Catalytic Decomposition of Propane Over Cabon-Based Catalyst (탄소계 촉매를 이용한 프로판 분해 반응에 의한 수소 생산)

  • Yoon, Suk Hoon;Han, Gi Bo;Lee, Jong Dae;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin;Yoon, Ki June;Han, Gui Young
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.668-674
    • /
    • 2005
  • It is reported that a method for the hydrogen production from the propane decomposition using carbon black as a catalyst is more effective than from the methane decomposition. Since the by-products like CO and $CO_2$ are not produced by the direct decomposition of propane, it is considered as an environmentally sustainable process. In this study, hydrogen was produced by the direct decomposition of propane using either commercial activated carbon or carbon black at atmospheric pressure in the temperature range of $500-1,000^{\circ}C$. Resulting products in our experiment were not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene. Hydrogen yield increased as temperature increased because the amount of those by-products produced in the experiment was inversely proportional to temperature. The achieved hydrogen yield at $750^{\circ}C$ with commercial DCC N330 catalyst was 22.47% in this study.