• Title/Summary/Keyword: 메타카올린

Search Result 79, Processing Time 0.036 seconds

An Experimental Study on Quality Properties of High Strength Concrete by the Replacement ratio Meta-kaolin Usable as Substitutes of Silica-fume (실리카흄 대체재로 활용 가능한 메타카올린의 치환율에 따른 고강도 콘크리트의 품질특성에 관한 실험적 연구)

  • Lee, Seung-Min;Lee, Ji-Hwan;Lee, Jong-Suk;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.333-336
    • /
    • 2008
  • As the high-rise building increase due to the gravitation of population to big cities recently, it requires high quality and high performance of Concrete. As a result, people are keenly interested in Meta-kaolin as new admixture favorable from an economic perspective, which has strength and endurance with admixture at the same level like Silicafume. Accordingly, as to Meta-kaolin, this study was to set by three levels like domestic one, foreign one, and Silicafume, the waterbinding material ratio 25%, and four level substitute like 0, 10, 20, and 30(%) in order to compare and analyze the quality characteristics of high-strength concrete according to the substitute of Meta-kaolin applicable with replacement of Silicafume. As a result of performing experiment, as to the higher the additive amount of Superplasticizing agents in order to secure target liquidity was, the more the substitute in each admixture increased. This study had a tendency that the Silicafume increased the additive amount of Superplasticizing agents with high fineness compared with Meta-kaolin. In addition, the higher the substitute in each admixture was, the more its strength increased On the strength property, the higher the substitute in each admixture was, the more its strength increased. This study has found out that the Meta-kaolin has shown the better strength than the one of Silicafume. On the other hand, the relationship between the Compressive strength and Elastic coefficient has shown the similar formula suggested from ACI363.

  • PDF

A Study on the Mechanical and Flowing Properties of High-strength Mortar Binding Admixture (고강도 모르타르용 결합재의 유동특성 및 역학특성에 관한 연구)

  • Lee, Sang-Soo;Lee, Yun-Seong;Lee, Kang-Pil
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.105-110
    • /
    • 2009
  • It's important to study about suitable substitutional material of expensive silica fume because it used widely for silica fume as a high-strength mortar binding agent. The main purpose of this study is to check which is the most efficient binder for the expensive silica fume's alternative material. And this study also present basic data about to make high-strength mortar when we use alternative material instead of silica fume through research outcome. Also writers analzed flow properties respectively, so it was founded out the substitutional goods fare like meta-kaolin, HMBA which are less expensive than silica fume because they are in domestic enough.

  • PDF

Characteristic of retentive concrete using bottom ash and metakaolin (바텀애시 및 메타카올린을 사용(使用)한 보수성(保水性)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Jeong, Houi-Gab;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2011
  • This study was to draw a retentive concrete pavement that can reduce urban heat island which has become intensified according to the increase of buildings and paved roads. It used bottom ash, an industrial by-product that has retentive effect, as a replacement of fine aggregate. Meanwhile, in order to improve the decline of dynamic performance caused by bottom ash replacement, we manufactured specimen that metakaolin was added and we studied the characteristics of durable, ecological and retentive concrete through various experiments.

Properties of High-Performance Concrete Containing High - Reactivity Metakaolin (고반응성 메타카올린을 사용한 고성능 콘크리트의 특성)

  • 원종필;권연성;이존자
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • This research deals with the properties of fresh and hardened high-performance concrete(HPC) incorporating high-reactivity metakaolin(HRM). The properties of fresh and hardened state concrete were investigated included air content, slump flow, setting time, heat of hydration, compressive strength, resistance to chloride-ion penetration, abrasion and repeated freezing and thawing. The properties of the HRM concrete were also compared with those of the portland cement concrete and silica fume(SF) concrete. The laboratory test results indicate that HRM material can be used as a supplementary cementitious material to produce high-performance concrete.

Physical Properties Testing and Practical Applications of Restoration Materials Made with Extra Hard Stone and Metakaolin (초경석고와 메타카올린 혼합재료의 물성실험 및 적용)

  • Kim, Hyunsuk;Lee, Haesoon
    • Conservation Science in Museum
    • /
    • v.17
    • /
    • pp.101-116
    • /
    • 2016
  • Ceramic cultural artifacts restored with gypsum-based materials are prone to decay over time due to gypsum's natural absorption and release of atmospheric moisture, often leading to distortion and peeling of painted layers. This study proposes a new restoration material which utilizes extra hard stone, significantly superior in strength to regular gypsum. In order to enhance its physical properties and make it suitable for restoration of ceramics, extra hard stone is mixed with metakaolin. This mixture far surpasses regular gypsum in compressive strength(119MPa vs. 26MPa) while also maintaining a much lower wear rate(0.88% vs. 2.53%). Furthermore, the water absorption rate(2.9%) of the mixed material is over five times lower than that of regular gypsum(17.2%). When examined using a SEM(Scanning Electron Microscope), this mixture also proved superior to extra hard stone in terms of hardened density. The addition of metakaolin increases the mixture's strength and water resistance over that of extra hard stone and also improves its surface density, making it ideal for the restoration of ceramics. It has already been used to repair ceramic objects in the Museum's collection: Clay basin(sinan 18892), Buncheong ware bottle with incised peony design(jubsu 2034), Buncheong ware bowl with chrysanthemum(jubsu 1730). Results thus far have shown the mixture to be easy to inject and layer as well as harden into an even surface, which allows for smooth application of paint for color matching.

A Study on the Characteristic of Capillary Pore and Chloride Diffusivity by Electrical Difference of High-Strength Concrete Using Metakaolin (메타카올린을 사용한 고강도콘크리트의 모세관공극 특성과 전위차 염소이온 확산계수에 관한 연구)

  • Kim, Nam-Wook;Yeo, Dong-Goo;Song, Jun-Ho;Bae, Ju-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.499-506
    • /
    • 2007
  • According to the high demand of concrete structures with high performance, various studies have examined on the high performance concrete, especially high strength concrete. Various admixtures are required to produce high strength concrete and silica fume has been the most popular admixture. Recently, however, metakaolin, which is similar to silica fume in properties but cheaper, has been introduced to high strength concrete. In this study, high-strength concrete using metakaolin were studied of capillary pore structure by mercury intrusion porosimetry technique and the accelerated chloride diffusivity by electrical difference. In result, it was found that the pore structure improved and compressive strength increased and chloride diffusivity reduced as more metakaolin content was added. In addition, a regression analysis of $5{\sim}2,000nm$ pore volume and both compression strength and chloride diffusivity revealed that each these had a high correlation of about 0.76 and 0.68.

Effect of Mineral Admixture on Bond Properties between Polyolefin Based Synthetic Fiber and Cement Mortar (폴리올레핀계 합성 섬유와 시멘트 모르타르와의 부착 특성에 미치는 광물질 혼화재의 효과)

  • Lee, Jin-Hyeong;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.339-346
    • /
    • 2011
  • The effects of mineral admixtures on the bonding properties of cement mortar to polyolefin based synthetic fiber were evaluated. The mineral admixtures consisted of 0%, 5%, 10%, and 15% fly ash, blast furnace slag, and metakaolin in cement. Bond interactions between the cement mortar and the polyolefin based synthetic fiber were determined by Dog-bone bond tests. Bond tests of the polyolefin based synthetic fiber showed an increase in pullout load with the strength of the cement mortar. Also, the interface toughness of polyolefin based synthetic fiber in cement mortar increased as the fly ash, blast furnace slag, and metakaolin contents increased. The microstructure of polyolefin based synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to the replacement ratio of fly ash, blast furnace slag, and metakaolin during the pullout process of polyolefin based synthetic fiber in cement mortar. The scratched of polyolefin based synthetic fibers increased with the replacement ratio of fly ash, blast furnace slag, and metakaolin. Also, the interface toughness was enhanced by adhesion forces induced by the fly ash, blast furnace slag, and metakaolin.