• 제목/요약/키워드: 메모리 크기

검색결과 892건 처리시간 0.019초

In-Sb-Te 박막의 결정화 거동에 관한 투과전자현미경 연구 (A Transmission Electron Microscopy Study on the Crystallization Behavior of In-Sb-Te Thin Films)

  • 김청수;김은태;이정용;김용태
    • Applied Microscopy
    • /
    • 제38권4호
    • /
    • pp.279-284
    • /
    • 2008
  • 상변화 메모리 재료로 사용 가능한 In-Sb-Te (IST) 박막을 RF 마그네트론 스퍼터링법을 사용하여 증착한 후 열처리를 통해 온도에 따른 결정화 거동 및 미세구조를 투과전자현미경(TEM)을 통해 분석하였다. IST 박막은 as-dep 상태에서 비정질상으로 존재하였으며, 열처리 온도에 따라 결정상인 InSb, $In_3SbTe_2$, InTe으로 상변화가 일어났다. 이러한 상변화는 기존의 삼원계 상태도와 다른 비평형 상태에서의 상변태가 이루어짐을 확인할 수 있다. 상변화 과정 중 박막의 두께가 무질서하게 배열되었던 비정질상에서 규칙적인 배열을 갖는 결정질상으로 변할수록 감소하는 경향을 확인하였다. 또한 각각의 결정립의 크기도 온도가 증가할수록 증가하는 것을 관찰하였다. 특히, $350^{\circ}C$ 열처리한 박막의 InSb 상은 비정질 상태에서 표면에너지가 가장 낮은 {111}면을 따라 facet을 이루며 결정화가 이루어졌다. 온도가 증가함에 따라 $In_3SbTe_2$로 상변화가 일어났는데, $400^{\circ}C$ 열처리한 시편의 경우 미소영역에서 마이크로 트윈들이 관찰되었다. 이 면결함은 {111}면을 따라 양쪽의 격자점들이 일치하는 정합 쌍정립계를 이루고 있었으며, $450^{\circ}C$에서 동일영역을 관찰해 본 결과 쌍정 결함들이 치유되어 {111} facet 면을 이루고 있는 것을 확인하였다. 또한 비교적 작은 영역에서 상분리가 일어난 InTe 상도 관찰하였다. InTe 상의 경우 포정반응 온도인 $555^{\circ}C$보다 낮은 온도에서 관찰되었는데, InTe의 (002)면과 $In_3SbTe_2$의 (111)면이 비슷한 면간거리를 가지고 있음을 확인하였다. 추가적으로 $500^{\circ}C$ 이상의 온도에서 이들의 결정학적 관계에 따른 상변화 과정에 연구가 수행되어야 할 것으로 생각된다.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.