• 제목/요약/키워드: 멀티 모달 데이터

검색결과 109건 처리시간 0.022초

인텔리젼트 멀티미디어 단말기를 위한 온라인 한글 인식 (Online Korean Character Recognition for Intelligent Multimedia Terminal)

  • 오준택;이우범;김욱현
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.229-232
    • /
    • 2000
  • 문자인식은 멀티 모달 인터페이스의 핵심요소로서 이동 환경에서 사용자의 다양한 요구사항을 처리하는 지능형 단말기의 구현을 위해 필수적으로 개발되어야 할 과제이다. 그러나 대부분의 기존 연구는 인식률의 향상만을 위해서 복잡한 획 해석과 백트래킹을 사용하기 때문에 멀티미디어 단말기에 적합하지 못하다. 따라서 본 논문은 멀티미디어 단말기로의 적용을 목적으로 한 새로운 온라인 한글 문자 인식 방법을 제안한다. 제안된 방법은 한글 문자의 특성정보와 획 정보를 기반으로 구축된 한글 데이터 베이스를 사용한다. 또한 획간의 위치관계를 이용한 순차적 자소 분리와 향상된 백트래킹 기법에 의해서 보다 빠른 처리 시간을 보장한다. 제안된 시스템의 성능 평가는 상용 1,200 단어를 이용하여 다수의 필기자가 필기한 한글 600문자를 대상으로 실험한 결과 95% 이상의 인식률을 얻었다.

  • PDF

한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구 (Research on Generative AI for Korean Multi-Modal Montage App)

  • 임정현;차경애;고재필;홍원기
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2024
  • 멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.

멀티채널 기반 드라마 동영상 의미 분절화를 위한 비모수 베이지안 방법 (Nonparametric Bayesian Approach for Multichannel based Semantic Segmentation of TV Dramas)

  • 석호식;이바도;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.474-476
    • /
    • 2012
  • 본 논문에서는 드라마 동영상의 의미 분절화(Semantic segmentation)를 위한 멀티 채널 기반 비모수적 베이지만 방법론을 소개한다. 기존 방법론은 매우 한정적인 특징만을 이용하여 분절화를 시도하거나 이미지 채널이나 오디오 채널과 같은 단일 채널에서만 유효한 방법론을 이용하여 데이터 분석을 시도하였기에, TV 드라마와 같이 예측할 수 없는 변화를 보여주는 스트림 데이터에 적용하기에는 어려움이 많았다. 이와 같은 단점을 극복하기 위해 우리는 주어진 동영상을 단일 모달리티의 채널로 분할한 후 각 채널 별로 분절화를 시도하고 각 채널의 분절 결과를 동적으로 결합하여 주어진 동영상에서의 의미 분절화를 근사하는 방법을 개발하였다. 제안 방법은 실제 TV 동영상의 의미 분절화에 적용되었으며 인간 평가자에 의한 의미 변화 구간과의 비교를 통해 그 성능을 확인하였다.

가스 센서 데이터셋 시각화를 위한 데이터 전처리 기법 (Data Preprocessing Techniques for Visualizing Gas Sensor Datasets)

  • 김준수;박경원;임태범;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.21-22
    • /
    • 2021
  • 최근 AI(Artificial Intelligence)를 기반으로 정밀한 가스 성분 감지를 위한 후각지능(Olfactory intelligence) 기술에 연구가 활발히 진행 중이다. 후각지능 학습데이터는 다른 감지 방식의 가스 센서들이 동시에 적용되는 멀티모달리티의 특성을 지니며 또한, 공간상에 분포된 센서 배열을 통해 획득된 다차원의 시계열 특성을 지닌다. 따라서 대량의 다차원 데이터에 대한 정확한 이해와 분석을 위해서는 데이터를 전처리하고 시각화할 수 있는 기술이 필요하다. 본 논문에서는 후각지능 학습을 위한 다차원의 복잡한 가스 데이터의 시각화를 위해 잡음 등의 불필요한 값을 제거하고, 데이터가 일관성을 가지도록 하며, 데이터의 차원을 시각화 가능하도록 축소하기 위한 전처리 방법을 제시한다.

  • PDF

이미지-텍스트 자질을 이용한 행동 포착 비디오 기반 대화시스템 (Audio-Visual Scene Aware Dialogue System Utilizing Action From Vision and Language Features)

  • 임정우;장윤나;손준영;이승윤;박기남;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.253-257
    • /
    • 2023
  • 최근 다양한 대화 시스템이 스마트폰 어시스턴트, 자동 차 내비게이션, 음성 제어 스피커, 인간 중심 로봇 등의 실세계 인간-기계 인터페이스에 적용되고 있다. 하지만 대부분의 대화 시스템은 텍스트 기반으로 작동해 다중 모달리티 입력을 처리할 수 없다. 이 문제를 해결하기 위해서는 비디오와 같은 다중 모달리티 장면 인식을 통합한 대화 시스템이 필요하다. 기존의 비디오 기반 대화 시스템은 주로 시각, 이미지, 오디오 등의 다양한 자질을 합성하거나 사전 학습을 통해 이미지와 텍스트를 잘 정렬하는 데에만 집중하여 중요한 행동 단서와 소리 단서를 놓치고 있다는 한계가 존재한다. 본 논문은 이미지-텍스트 정렬의 사전학습 임베딩과 행동 단서, 소리 단서를 활용해 비디오 기반 대화 시스템을 개선한다. 제안한 모델은 텍스트와 이미지, 그리고 오디오 임베딩을 인코딩하고, 이를 바탕으로 관련 프레임과 행동 단서를 추출하여 발화를 생성하는 과정을 거친다. AVSD 데이터셋에서의 실험 결과, 제안한 모델이 기존의 모델보다 높은 성능을 보였으며, 대표적인 이미지-텍스트 자질들을 비디오 기반 대화시스템에서 비교 분석하였다.

  • PDF

의료영상에서 생성형 인공지능과 대형 언어 모델 입문 (Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging)

  • 김기덕;홍길선;김남국
    • 대한영상의학회지
    • /
    • 제85권5호
    • /
    • pp.848-860
    • /
    • 2024
  • 최근 ChatGPT를 포함한 대형 언어 모델의 출현으로 생성형 인공지능은 다양한 분야에 관심을 끌고 있다. 생성형 인공지능은 학습 방법과 데이터에 따라 텍스트, 이미지, 음성 등 다양한 형태의 데이터를 생성할 수 있다. 이에 더해 최근 텍스트와 이미지 등 여러 종류의 데이터를 동시에 처리할 수 있는 기술의 발달로, 다양한 임상정보와 영상정보를 함께 활용해야 하는 의료 환경에서 이러한 멀티모달 생성형 인공지능의 활용 가능성이 높아지고 있다. 본 종설에서는 대형 언어 모델, 이미지 생성 모델, 멀티모달 인공지능에 대한 개념과 종류 등에 대해 알아보고, 연구 사례를 통해 영상의학 분야에서 생성형 인공지능의 활용과 향후 가능성을 알아보고자 한다.

멀티 모달 센서 네트워크를 위한 질의 처리 (Query processing for multi-modal sensor network)

  • 이미정;정유나;황인준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.64-66
    • /
    • 2004
  • 최근 들어 통신 기술과 센서 기기의 발달로 센서 네트워크에 대한 연구가 활발히 진행되고있다. 특히 센서노드를 통해 데이터를 수집하고 처리하는 기술이 중요한 이슈로 떠오르고 있다. 그러나 기존의 논문에서는 한 종류의 노드에서만 정보를 수집하는 것을 가정하고 있다. 하지만 여러 종류의 센서 노드에서 정보를 수집해야 하는 경우도 발생할 수 있다. 그러므로 본 논문에서는 여러 종류의 센서 노드를 고려한 센서 네트워크 구조를 제안한다. 또한 제안한 네트워크 구조에서 이루어지는 다양한 질의 처리 방법을 제시한다.

  • PDF

소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템 (Deep Learning Music genre automatic classification voting system using Softmax)

  • 배준;김장영
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 2019
  • 인간이 가진 뛰어난 능력 중의 하나인 곡 분류 과정을 딥러닝 알고리즘을 통해 구현하는 연구는 단일데이터를 이용한 유니모달 모델, 멀티모달 모델, 뮤직비디오를 이용한 멀티모달 방식 등이 있다. 이 연구에서는 곡의 스펙트로그램을 짧은 샘플들로 분할하여 각각을 CNN으로 분석한 뒤 그 결과를 투표하는 시스템을 제안하여 더 좋은 결과를 얻었다. 딥러닝 알고리즘 중 CNN이 RNN에 비해 음악 장르 구분에 있어 우수한 성능을 보였으며 CNN과 RNN을 같이 적용했을 때 성능이 좋아짐을 알 수 있었다. 음악샘플을 나누어 각각의 CNN 결과를 투표하는 시스템이 이전 모델에 비해 좋은 결과를 나타내었고 이 모델에 Softmax 레이어를 추가한 모델이 가장 좋은 성능을 보였다. 디지털 미디어의 폭발적인 성장과 수많은 스트리밍 서비스 속에서 음악장르의 자동분류에 대한 필요는 점점 증가하고 있는 추세이다. 향후 연구에서는 미분류 곡의 비율을 낮추고 최종적으로 미분류된 곡들의 장르구분에 대한 알고리즘을 개발할 필요가 있을 것이다.

PC카메라를 이용한 실시간 립리딩 시스템 설계 및 구현 (Design & Implementation of Real-Time Lipreading System using PC Camera)

  • 이은숙;이지근;이상설;정성태
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.310-313
    • /
    • 2003
  • 최근 들어 립리딩은 멀티모달 인터페이스 기술의 응용분야에서 많은 관심을 모으고 있다. 동적영상을 이용한 립리딩 시스템에서 해결해야 할 주된 문제점은 상황 변화에 독립적으로 얼굴 영역과 입술 영역을 추출하고 오프라인이 아닌 실시간으로 입력된 입술 영상의 인식을 처리하여 립리딩의 사용도를 높이는 것이다. 본 논문에서는 사용자가 쉽게 사용할 수 있는 PC카메라를 사용하여 영상을 입력받아 학습과 인식을 실시간으로 처리하는 립리딩 시스템을 구현하였다. 본 논문에서는 움직임이 있는 화자의 얼굴영역과 입술영역을 컬러, 조명등의 변화에 독립적으로 추출하기 위해 HSI모델을 이용하였다. 입력 영상에서 일정한 크기의 영역에 대한 색도 히스토그램 모델을 만들어 색도 영상에 적용함으로써 얼굴영역의 확률 분포를 구하였고, Mean-Shift Algorithm을 이용하여 얼굴영역의 검출과 추적을 하였다. 특징 점 추출에는 이미지 기반 방법인 PCA 기법을 이용하였고, HMM 기반 패턴 인식을 사용하여 실시간으로 실험영상데이터에 대한 학습과 인식을 수행할 수 있었다.

  • PDF

견고한 입술 영역 추출을 이용한 립리딩 시스템 설계 및 구현 (Design & Implementation of Lipreading System using Robust Lip Area Extraction)

  • 이은숙;이호근;이지근;김봉완;이상설;이용주;정성태
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.524-527
    • /
    • 2003
  • 최근 들어 립리딩은 멀티모달 인터페이스 기술의 응용분야에서 많은 관심을 모으고 있다. 동적 영상을 이용한 립리딩 시스템에서 해결해야 할 주된 문제점은 상황 변화에 독립적인 얼굴 영역과 입술 영역을 추출하는 것이다. 본 논문에서는 움직임이 있는 영상에서 화자의 얼굴영역과 입술영역을 컬러, 조명등의 변화에 독립적으로 추출하기 위해 HSI 모델과 블록 매칭을 이용하였고 특징 점 추출에는 이미지 기반 방법인 PCA 기법을 이용하였다. 추출된 입술 파라미터와 음성 데이터에 각각 HMM 기반 패턴 인식 방법을 개별적으로 적용하여 단어를 인식하였고 각각의 인식 결과를 가중치를 주어 합병하였다. 실험 결과에 의하면 잡음으로 음성 인식률이 낮아지는 경우에 음성인식과 립리딩을 함께 사용함으로써 전체적인 인식 결과를 향상시킬 수 있었다.

  • PDF