• Title/Summary/Keyword: 멀티 모달 데이터

Search Result 109, Processing Time 0.025 seconds

Multimodal depression detection system based on attention mechanism using AI speaker (AI 스피커를 활용한 어텐션 메커니즘 기반 멀티모달 우울증 감지 시스템)

  • Park, Junhee;Moon, Nammee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.28-31
    • /
    • 2021
  • 전세계적으로 우울증은 정신 건강 질환으로써 문제가 되고 있으며, 이를 해결하기 위해 일상생활에서의 우울증 탐지에 대한 연구가 진행되고 있다. 따라서 본 논문에서는 일상생활에 밀접하게 연관되어 있는 AI 스피커를 사용한 어텐션 메커니즘(Attention Mechanism) 기반 멀티모달 우울증 감지 시스템을 제안한다. 제안된 방법은 AI 스피커로부터 수집할 수 있는 음성 및 텍스트 데이터를 수집하고 CNN(Convolutional Neural Network)과 BiLSTM(Bidirectional Long Short-Term Memory Network)를 통해 각 데이터에서의 학습을 진행한다. 학습과정에서 Self-Attention 을 적용하여 특징 벡터에 추가적인 가중치를 부여하는 어텐션 메커니즘을 사용한다. 최종적으로 음성 및 텍스트 데이터에서 어텐션 가중치가 추가된 특징들을 합하여 SoftMax 를 통해 우울증 점수를 예측한다.

  • PDF

Generating A Synthetic Multimodal Dataset for Vision Tasks Involving Hands (손을 다루는 컴퓨터 비전 작업들을 위한 멀티 모달 합성 데이터 생성 방법)

  • Lee, Changhwa;Lee, Seongyeong;Kim, Donguk;Jeong, Chanyang;Baek, Seungryul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1052-1055
    • /
    • 2020
  • 본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다. 생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양 및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크 훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의 질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.

Improved Semantic Segmentation in Multi-modal Network Using Encoder-Decoder Feature Fusion (인코더-디코더 사이의 특징 융합을 통한 멀티 모달 네트워크의 의미론적 분할 성능 향상)

  • Sohn, Chan-Young;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.81-83
    • /
    • 2018
  • Fully Convolutional Network(FCN)은 기존의 방법보다 뛰어난 성능을 보였지만, FCN은 RGB 정보만을 사용하기 때문에 세밀한 예측이 필요한 장면에서는 다소 부족한 성능을 보였다. 이를 해결하기 위해 인코더-디코더 구조를 이용하여 RGB와 깊이의 멀티 모달을 활용하기 위한 FuseNet이 제안되었다. 하지만, FuseNet에서는 RGB와 깊이 브랜치 사이의 융합은 있지만, 인코더와 디코더 사이의 특징 지도를 융합하지 않는다. 본 논문에서는 FCN의 디코더 부분의 업샘플링 과정에서 이전 계층의 결과와 2배 업샘플링한 결과를 융합하는 스킵 레이어를 적용하여 FuseNet의 모달리티를 잘 활용하여 성능을 개선했다. 본 실험에서는 NYUDv2와 SUNRGBD 데이터 셋을 사용했으며, 전체 정확도는 각각 77%, 65%이고, 평균 IoU는 47.4%, 26.9%, 평균 정확도는 67.7%, 41%의 성능을 보였다.

  • PDF

A Personal Video Event Classification Method based on Multi-Modalities by DNN-Learning (DNN 학습을 이용한 퍼스널 비디오 시퀀스의 멀티 모달 기반 이벤트 분류 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1281-1297
    • /
    • 2016
  • In recent years, personal videos have seen a tremendous growth due to the substantial increase in the use of smart devices and networking services in which users create and share video content easily without many restrictions. However, taking both into account would significantly improve event detection performance because videos generally have multiple modalities and the frame data in video varies at different time points. This paper proposes an event detection method. In this method, high-level features are first extracted from multiple modalities in the videos, and the features are rearranged according to time sequence. Then the association of the modalities is learned by means of DNN to produce a personal video event detector. In our proposed method, audio and image data are first synchronized and then extracted. Then, the result is input into GoogLeNet as well as Multi-Layer Perceptron (MLP) to extract high-level features. The results are then re-arranged in time sequence, and every video is processed to extract one feature each for training by means of DNN.

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

A Study on the Weight Allocation Method of Humanist Input Value and Multiplex Modality using Tacit Data (암묵 데이터를 활용한 인문학 인풋값과 다중 모달리티의 가중치 할당 방법에 관한 연구)

  • Lee, Won-Tae;Kang, Jang-Mook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.157-163
    • /
    • 2014
  • User's sensitivity is recognized as a very important parameter for communication between company, government and personnel. Especially in many studies, researchers use voice tone, voice speed, facial expression, moving direction and speed of body, and gestures to recognize the sensitivity. Multiplex modality is more precise than single modality however it has limited recognition rate and overload of data processing according to multi-sensing also an excellent algorithm is needed to deduce the sensing value. That is as each modality has different concept and property, errors might be happened to convert the human sensibility to standard values. To deal with this matter, the sensibility expression modality is needed to be extracted using technologies like analyzing of relational network, understanding of context and digital filter from multiplex modality. In specific situation to recognize the sensibility if the priority modality and other surrounding modalities are processed to implicit values, a robust system can be composed in comparison to the consuming of computer resource. As a result of this paper, it is proposed how to assign the weight of multiplex modality using implicit data.

Multi-Modal based ViT Model for Video Data Emotion Classification (영상 데이터 감정 분류를 위한 멀티 모달 기반의 ViT 모델)

  • Yerim Kim;Dong-Gyu Lee;Seo-Yeong Ahn;Jee-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.9-12
    • /
    • 2023
  • 최근 영상 콘텐츠를 통해 영상물의 메시지뿐 아니라 메시지의 형식을 통해 전달된 감정이 시청하는 사람의 심리 상태에 영향을 주고 있다. 이에 따라, 영상 콘텐츠의 감정을 분류하는 연구가 활발히 진행되고 있고 본 논문에서는 대중적인 영상 스트리밍 플랫폼 중 하나인 유튜브 영상을 7가지의 감정 카테고리로 분류하는 여러 개의 영상 데이터 중 각 영상 데이터에서 오디오와 이미지 데이터를 각각 추출하여 학습에 이용하는 멀티 모달 방식 기반의 영상 감정 분류 모델을 제안한다. 사전 학습된 VGG(Visual Geometry Group)모델과 ViT(Vision Transformer) 모델을 오디오 분류 모델과 이미지 분류 모델에 이용하여 학습하고 본 논문에서 제안하는 병합 방법을 이용하여 병합 후 비교하였다. 본 논문에서는 기존 영상 데이터 감정 분류 방식과 다르게 영상 속에서 화자를 인식하지 않고 감정을 분류하여 최고 48%의 정확도를 얻었다.

  • PDF

Improved Transformer Model for Multimodal Fashion Recommendation Conversation System (멀티모달 패션 추천 대화 시스템을 위한 개선된 트랜스포머 모델)

  • Park, Yeong Joon;Jo, Byeong Cheol;Lee, Kyoung Uk;Kim, Kyung Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • Recently, chatbots have been applied in various fields and have shown good results, and many attempts to use chatbots in shopping mall product recommendation services are being conducted on e-commerce platforms. In this paper, for a conversation system that recommends a fashion that a user wants based on conversation between the user and the system and fashion image information, a transformer model that is currently performing well in various AI fields such as natural language processing, voice recognition, and image recognition. We propose a multimodal-based improved transformer model that is improved to increase the accuracy of recommendation by using dialogue (text) and fashion (image) information together for data preprocessing and data representation. We also propose a method to improve accuracy through data improvement by analyzing the data. The proposed system has a recommendation accuracy score of 0.6563 WKT (Weighted Kendall's tau), which significantly improved the existing system's 0.3372 WKT by 0.3191 WKT or more.

Multi-Modal Cross Attention for 3D Point Cloud Semantic Segmentation (3차원 포인트 클라우드의 의미적 분할을 위한 멀티-모달 교차 주의집중)

  • HyeLim Bae;Incheol Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.660-662
    • /
    • 2023
  • 3차원 포인트 클라우드의 의미적 분할은 환경을 구성하는 물체 단위로 포인트 클라우드를 분할하는 작업으로서, 환경의 3차원적 구성을 이해하고 환경과 상호작용에 필수적인 시각 지능을 요구한다. 본 논문에서는 포인트 클라우드에서 추출하는 3차원 기하학적 특징과 함께 멀티-뷰 영상에서 추출하는 2차원 시각적 특징들도 활용하는 새로운 3차원 포인트 클라우드 의미적 분할 모델 MFNet을 제안한다. 제안 모델은 서로 이질적인 2차원 시각적 특징과 3차원 기하학적 특징의 효과적인 융합을 위해, 새로운 중기 융합 전략과 멀티-모달 교차 주의집중을 이용한다. 본 논문에서는 ScanNetV2 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 제안 모델 MFNet의 우수성을 입증한다.

Design of a Deep Neural Network Model for Image Caption Generation (이미지 캡션 생성을 위한 심층 신경망 모델의 설계)

  • Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose an effective neural network model for image caption generation and model transfer. This model is a kind of multi-modal recurrent neural network models. It consists of five distinct layers: a convolution neural network layer for extracting visual information from images, an embedding layer for converting each word into a low dimensional feature, a recurrent neural network layer for learning caption sentence structure, and a multi-modal layer for combining visual and language information. In this model, the recurrent neural network layer is constructed by LSTM units, which are well known to be effective for learning and transferring sequence patterns. Moreover, this model has a unique structure in which the output of the convolution neural network layer is linked not only to the input of the initial state of the recurrent neural network layer but also to the input of the multimodal layer, in order to make use of visual information extracted from the image at each recurrent step for generating the corresponding textual caption. Through various comparative experiments using open data sets such as Flickr8k, Flickr30k, and MSCOCO, we demonstrated the proposed multimodal recurrent neural network model has high performance in terms of caption accuracy and model transfer effect.