• Title/Summary/Keyword: 멀티큐 SSD

Search Result 2, Processing Time 0.019 seconds

Multi-core Scalable Fair I/O Scheduling for Multi-queue SSDs (멀티큐 SSD를 위해 멀티코어 확장성을 제공하는 공정한 입출력 스케줄링)

  • Cho, Minjung;Kang, Hyeongseok;Kim, Kanghee
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.469-475
    • /
    • 2017
  • The emerging NVMe-based multi-queue SSDs provides a high bandwidth by parallel I/O, i.e., each core performs I/O through its dedicated queue in parallel with other cores. To provide a bandwidth share for each application with I/O, a fair-share scheduler that provides a bandwidth share to each core is required. In this study, we proposed a multi-core scalable fair-queuing algorithm for multi-queue SSDs. The algorithm adopts randomization to minimize the inter-core synchronization overheads and provides a weight-proportional bandwidth share to each core. The results of our experiments indicated that the proposed algorithm gives accurate bandwidth partitioning and outperforms the existing FlashFQ scheduler, regardless of the number of cores for a Linux kernel with block-mq.

Performance Analysis of NVMe SSDs and Design of Direct Access Engine on Virtualized Environment (가상화 환경에서 NVMe SSD 성능 분석 및 직접 접근 엔진 개발)

  • Kim, Sewoog;Choi, Jongmoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • NVMe(Non-Volatile Memory Express) SSD(Solid State Drive) is a high-performance storage that makes use of flash memory as a storage cell, PCIe as an interface and NVMe as a protocol on the interface. It supports multiple I/O queues which makes it feasible to process parallel-I/Os on multi-core environments and to provide higher bandwidth than SATA SSDs. Hence, NVMe SSD is considered as a next generation-storage for data-center and cloud computing system. However, in the virtualization system, the performance of NVMe SSD is not fully utilized due to the bottleneck of the software I/O stack. Especially, when it uses I/O stack of the hypervisor or the host operating system like Xen and KVM, I/O performance degrades seriously due to doubled-I/O stack between host and virtual machine. In this paper, we propose a new I/O engine, called Direct-AIO (Direct-Asynchronous I/O) engine, that can access NVMe SSD directly for I/O performance improvements on QEMU emulator. We develop our proposed I/O engine and analyze I/O performance differences between the existed I/O engine and Direct-AIO engine.