쇼크 업쇼바의 로드는 피스톤부 중심에 위치하여 왕복운동을 담당하는 부분으로 표면의 불량(찍힘)이 있을 경우 감쇠력에 대한 차이로 제품 성능을 제대로 발휘하는데 문제 발생의 요인이 되고 있다. 로드표면은 열처리 상태로 표면 광택으로 인하여 쉽게 불량이 표시되지 않으며, 작업자가 육안으로 로드의 이물질 및 찍힘, 기포 검사를 진행함으로써 눈의 피로도가 높아지고, 작업자 육안에 의존하기 때문에 제품의 검사 품질이 일정하지 않다. 본 연구에서는 제품의 원통 형상을 고려하여 라인스캔카메라를 이용한 머신비전 영상처리 기법으로 0.3mm이상의 표면의 불량을 검출하고, 검사단계에서 발생할 수 있는 표면 불량을 최소화하기 위한 전 공정 자동이송 및 양불 제품의 혼입을 방지하는 자동검사 시스템 개발에 대한 연구를 수행하였다. 표면검사 시스템 개발로 작업자의 육안 검사에 의존하고 있던 쇼크업쇼버 로드의 표면에 대한 정밀 검사시스템 구축으로 품질검사 기준을 확보하고 표준화된 검사로 신뢰도가 향상되었다.
국내외에서는 크랙실링 공법의 이점 및 도로면 유지보수 공사의 위험 요소를 인식하여 90년대 초반부터 크랙실링 자동화 장비 개발을 위한 연구를 진행하여 왔다. 기존 문헌 고찰과 도로면 크랙실링 자동화 장비(Automated Pavement Crack Sealer; APCS)의 실험실 및 현장 실험 결과, 도로면에 존재하는 크랙 네트워크를 자동으로 탐지하고 모델링하는 과정의 속도와 정확성을 향상시키는 것은 개발된 크랙실링 자동화 장비의 실용화를 위해 매우 중요한 요인으로 인식되었다 그러나, CCD 카메라를 통해 습득된 도로면 영상에서 크랙 네트워크를 완전 자동으로 인식하는 기술은 일반적인 영상 인식 분야에서 보다 외부 환경적인 요인으로 인해 낮은 인식률을 가지고 있다 본 연구를 통해 기존에 개발된 APCS 머신비전 알고리즘의 경우 도로면 영상의 환경 요인에 의해 발생된 문제점들을 많이 해결하였으나 실용화 단계에서 요구되는 크랙 인식률에는 도달하지 못하였다. 따라서, 본 연구의 목적은 기존 APCS 머신 비전 알고리즘의 완전 자동화 방식 크랙 탐지 및 모델링 알고리즘의 문제점을 분석하고 신경망 학습 기법을 이용한 크랙 인식 알고리즘을 개발하는 것이다.
BIRDI(Bridge Inspection Robot Development Inter)ace)에서 현재 개발된 첨단굴절로봇차는 기존의 굴절차에 비해 소형이며, 12m에 이르는 작업붐으로 인해 교량의 진동, 풍하중 등에 의해 쉽게 진동이 발생할 것으로 예상된다. 본 연구에서는 첨단굴절로봇차의 머신비전 시스템을 통한 점검 성능 확보를 위해 작업붐에 엑츄에이터를 장착하여 유해 진동을 제어할 수 있는 시스템을 제안하였으며, 성능 평가를 위해 수치적, 실험적 연구를 수행하였다. 제안된 제어시스템의 수치적 연구를 위해 현재 제작된 작업붐의 제원을 이용하여 모델링하였고, 적당한 주파수 특성을 가진 하중을 가정하였으며, 최적 제어이론인 LQ 조정기를 설계하였다. 수치해석 결과, 제안된 제어시스템은 작업붐에 발생되는 유해 진동을 저감시킬 수 있었다. 실험적 연구를 위해 작업붐의 축소 모형을 제작하였고 제어시스템을 구축하였다. 또한 실험결과 작업붐의 진동을 짧은 시간에 제어하는 우수한 성능을 보였다. 본 연구를 통해 제안된 시스템의 진동제어 성능을 입증하였으며, 실제 첨단굴절로봇차에 적용될 경우 점검 시스템의 성능을 향상시킬 수 있을 것으로 사료된다.
머신비전에서는 다양한 렌즈들이 제품의 불량을 검출하기 위해 사용되고 있다. 일반적인 렌즈의 시야로는 물체의 외관 일부분만을 촬영할 수 있고 전체 외관을 검사하기 위해서는 거울 등의 광학부품이나 여러 대의 렌즈와 카메라가 필요하게 된다. 이는 광학 시스템의 크기를 크게 만들며 고비용의 단점이 있다. 본 논문에서는 물체의 상면과 측면을 동시에 촬영할 수 있는 hypercentric 렌즈의 설계 주안점을 제시하였으며, 다양한 물체 촬영에 대응하며 이미지 크기를 유지할 수 있는 hypercentric 렌즈를 설계하였다. 또한 제작품의 성능 분석을 통해 설계의 타당성을 검증하였다.
최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.
최근 컴퓨터 처리 속도의 향상과 영상 처리 기술의 발달로 인해 카메라에서 획득하는 정보를 기존의 GNSS(Global Navigation Satellite System), 추측 항법 기반의 측위 기술과 결합하여 안정적인 위치를 결정하기 위한 연구가 활발히 진행 중이다. 기존 연구에서는 단안 카메라를 이용한 연구가 주로 수행되었으나 이 경우 관심 객체의 절대좌표가 구축이 되어 있어야 한다는 한계점이 있다. 이러한 한계를 극복하기 위해 본 연구에서는 스테레오 영상으로부터 삼각측량법을 적용하여 카메라와 관심 객체간 거리를 추정하는 비전 기반 측위 보조 알고리즘을 개발하고 성능 분석을 수행하였다. 또한, 추정된 거리와 카메라 영상 획득 간격을 이용해 상대적인 속도를 계산하고 이를 기존에 개발된 GNSS/이동체 내부 센서 기반 측위 알고리즘과 결합하여 통합 측위 알고리즘을 구현하였다. 실제 주행 자료를 기반으로 통합측위 알고리즘에 대한 성능을 분석한 결과 기존에 개발된 GNSS/이동체 내부 센서 기반 측위 알고리즘에 비해 속도 정보를 항법해 보정에 활용하였을 때 약 4%의 미미한 위치 정확도 향상 효과를 확인하였다. 이는 영상으로부터 추정된 속도 정보의 정밀도가 낮고, 터널 등을 지날 때는 영상으로부터 적절한 정보를 추출할 수 없다는 한계가 있어 이를 보완한 추가 연구가 필요하다고 판단된다.
4차 산업혁명 시대가 도래함에 따라 다양한 산업 분야에서 AI 활용역량이 강조되고 있다. 그러나 현재 보편적 교육으로서의 AI 교육 설계 연구 및 역량 중심교육 커리큘럼 연구가 부족하다. 본 연구에서는 대학에서의 비전공자를 위한 역량 중심 AI 리터러시 함양을 위한 보편적 AI 교육을 설계하는 데 목적을 둔다. 인문계열 AI 기초교육 설계를 위해 3차에 걸쳐 전문가 대상으로 설문을 진행하였고, 그 결과를 반영하여 도출된 설계 내용의 신뢰도를 검증하였다. 그 결과, AI 리터러시 함양을 위한 주요역량은 데이터 리터러시, AI 이해 및 활용능력이었으며, 이를 토대로 도출된 주요 세부 영역으로는 데이터 구조 이해 및 가공, 시각화, 워드클라우드, 공공데이터 활용, 머신러닝 개념 이해 및 활용이었다. 본 연구를 통해 도출된 교육 설계 내용은 향후 역량 중심의 AI 보편적 교육의 필요성과 가치를 높일 수 있을 것으로 기대한다.
이 글에서는 요즘 신문이나 텔레비전을 통해서 인체 내부를 돌며 검사 및 치료를 하는 마이크로 로보트 등의 차세대 첨단기술로서 일반 국민들에게 소개되기도 하며, MEMS, 마이크로머신, 마이크로시스템, 혹은 초소형 정밀기계 등으로 불리는 기술과 이 기술에 대한 각국 (미국, 일본, 유럽, 한국)의 기술 동향을 소개한다. 이에 이어서, 현재 과기처의 선도기술개발사업 (소위 G7사업) 으로서 진행되고 있는 초소형 정밀기계 기술개발 사업에 대한 소개를 한다. 이 분야에 종사하지 않는 보통 사람들을 위해 가급적 쉬운 말로 풀어 쓰도록 노력하였다. 이 글에서 다루고 있는 크기의 기본 단위는 마이크로미터 (천분의 일 밀리미터) 이며, 사람의 머리카락의 직경이 약 100 마이크로미터 (0.1mm) 내외이다. 초소형 기계나 초소형 부품들은 대개 이 머리카락의 직경정도이며, 머리카락속에 모터나 기어 등이 들어있다고 생각해도 크게 틀리지 않을 것이다.
According as the patterns of PCB (Printed Circuit Board) become denser and complicated, quality and accuracy of PCB influence the performance of final product. It's attempted to obtain trust of 100% about all of parts. Because human inspection in mass-production manufacturing facilities are both time-consuming and very expensive, the automation of visual inspection has been attempted for many years. Thus, automatic visual inspection of PCB is required. In this paper, we used an algorithm which compares the reference PCB patterns and the input PCB patterns are separated an object and a scene by filtering and edge detection. And than compare two image using pattern matching algorithm. We suggest an defect inspection algorithm in PCB pattern, to be satisfied low cost, high speed, high performance and flexibility on the basis of $640{\times}480$ binary pattern.
In order to inspect burr geometry and hole quality in micro-drilling processes, a cost-effective method using an image processing and shape from focus (SFF) methods on the machine tool is proposed. A CCD camera with a zoom lens and a novel illumination unit is used in this paper. Since the on-machine vision unit is incorporated with the CNC function of the machine tool, direct measurement and condition monitoring of micro-drilling processes are conducted between drilling processes on the machine tool. Stainless steel and hardened tool steel are used as specimens, as well as twist drills made of carbide are used in experiments. Validity of the developed system is confirmed through experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.