• Title/Summary/Keyword: 머신러닝 알고리즘

Search Result 421, Processing Time 0.027 seconds

The Algorithm For The Flow Of Debris Through Machine Learning (머신러닝 기법을 통한 토석류 흐름 구현 알고리즘)

  • Moon, Ju-Hwan;Yoon, Hong-Sik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.366-368
    • /
    • 2017
  • 본 연구는 국내 산사태 발생 데이터를 기반으로 시뮬레이션 모델을 머신러닝 기법을 통해 학습시켜 산사태의 토석류 흐름을 구현하는 알고리즘에 대한 연구이다. 전통적인 프로그래밍을 통한 산사태 시뮬레이션 모델 개발을 해당 시스템에 더 많은 고도의 물리학 법칙을 통합 적용시켜 토석류의 흐름을 공학적으로 재현해내는데 중점을 두고 개발이 진행되지만, 본 연구에서 다루는 머신러닝 기법을 통한 산사태 시뮬레이션 모델 개발의 경우 시스템에 입력되는 데이터를 기반으로한 학습을 통하여 토석류 흐름에 영향을 미치는 변수와 파라메터를 산출하고 정의는데 중점을 두고 개발이 진행된다. 본 연구에서 산사태 시뮬레이션 모델 개발에 활용하는 머신러닝 알고리즘은 강화학습 알고리즘으로 기존 산사태 발생 지점을 기반으로 에이전트를 설정해 시간에 따라 시뮬레이션의 각 스텝에서 토석류의 흐름 즉 액션을 환경에 따른 가중치를 기준으로 산정하게 된다. 여기서 환경에 따른 가중치는 시뮬레이션 모델에 정의된 메서드에 따라 산정된다. 시간이 목표값에 도달하여 결과가 출력되면 출력된 결과와 해당 산사태 발생 지점의 실제 산사태 피해 지역 데이터 즉 시뮬레이션 결과 이상치와의 비교를 통하여 시뮬레이션을 평가하게 된다. 이러한 평가는 시뮬레이션 데이터와 실제 데이터간의 유사도 비교를 통해 손실률을 도출하게 되고 이러한 손실률을 경사하강법등의 최적화 알고리즘을 통해 최소화 하여 입력된 데이터를 기반으로한 최적의 토석류 흐름 구현 알고리즘을 도출한다.

  • PDF

Comparison Analysis on Automatic Coloring System Algorithm Using Machine Learning (머신러닝을 활용한 자동 채색 시스템 알고리즘 비교 분석)

  • Lee, song eun;Lee, Ji Yeon;Kim, Na Heon;Kim, Jin Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.792-794
    • /
    • 2017
  • 현재 머신러닝(Machine Learning) 기술은 기존의 머신러닝과 조합 및 변형 되어 조금 더 발전 된 형태로 연구되어지고 있다. 따라서 수많은 알고리즘이 개발되고 있는 시점이다. 본 연구는 최근 좋은 결과로 관심을 받고있는 GAN(Generative Adversarial Net)을 중심으로 IT기술의 머신러닝과 그림을 조합하여 자동채색을 목적으로 GAN 알고리즘을 비교하고 분석하고자 한다. GAN 알고리즘들 가운데서 'Conditional GAN'과 'Wasserstein GAN'을 사용하여 자동채색을 적용시켰고, 가장 부합한 알고리즘을 찾고 성능을 비교하여 어떠한 알고리즘이 '자동채색' 목적에 더 부합한지 비교하고 판단 한다.

A Study on Machine Learning Algorithms based on Embedded Processors Using Genetic Algorithm (유전 알고리즘을 이용한 임베디드 프로세서 기반의 머신러닝 알고리즘에 관한 연구)

  • So-Haeng Lee;Gyeong-Hyu Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.417-426
    • /
    • 2024
  • In general, the implementation of machine learning requires prior knowledge and experience with deep learning models, and substantial computational resources and time are necessary for data processing. As a result, machine learning encounters several limitations when deployed on embedded processors. To address these challenges, this paper introduces a novel approach where a genetic algorithm is applied to the convolution operation within the machine learning process, specifically for performing a selective convolution operation.In the selective convolution operation, the convolution is executed exclusively on pixels identified by a genetic algorithm. This method selects and computes pixels based on a ratio determined by the genetic algorithm, effectively reducing the computational workload by the specified ratio. The paper thoroughly explores the integration of genetic algorithms into machine learning computations, monitoring the fitness of each generation to ascertain if it reaches the target value. This approach is then compared with the computational requirements of existing methods.The learning process involves iteratively training generations to ensure that the fitness adequately converges.

Machine Learning Algorithms Evaluation and CombML Development for Dam Inflow Prediction (댐 유입량 예측을 위한 머신러닝 알고리즘 평가 및 CombML 개발)

  • Hong, Jiyeong;Bae, Juhyeon;Jeong, Yeonseok;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.317-317
    • /
    • 2021
  • 효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.

  • PDF

Artificial Intelligence Algorithms for Identification of Handwriting (효과적인 필기체 인식을 위한 인공지능 알고리즘)

  • Kim, Seung-Ju;Lee, Jae-Yung;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.151-153
    • /
    • 2016
  • 최근 스마트폰, PC, 태블릿 같은 전자기기들이 발전하면서 기계를 통해 소통하는 시대가 왔다. 기계와 소통하기 위해 우리가 사용하는 문자를 인식하는 것은 중요한 일이다. 이런 전자기기들이 문자, 영상인식을 해야 할 필요성이 더욱 증가함에 따라 머신러닝의 중요성이 대두되었다. 머신러닝은 컴퓨터의 학습을 위해 알고리즘과 기술을 개발하는 분야를 말한다. 머신러닝의 기법과 관련된 알고리즘의 종류는 수없이 많다. 그 중에서도 Neural Network는 사람의 뇌 신경구조를 토대로 착안하여 네트워크를 만들고 이를 학습에 이용한 머신러닝 기법이다. 이런 인공지능 알고리즘인 Neural Network 구조를 바탕으로 특징을 추출하여 학습을 하는 Convolution Neural Network 기법의 사용이 늘고 있다. 본 논문에서는 Neural Network와 Convolution Neural Network의 알고리즘을 이용한 필기체 인식 실험을 하고 그 내용을 비교하였다.

  • PDF

A Study on the Factors Influencing a Company's Selection of Machine Learning: From the Perspective of Expanded Algorithm Selection Problem (기업의 머신러닝 선정에 영향을 미치는 요인 연구: 확장된 알고리즘 선택 문제의 관점으로)

  • Yi, Youngsoo;Kwon, Min Soo;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.37-64
    • /
    • 2022
  • As the social acceptance of artificial intelligence increases, the number of cases of applying machine learning methods to companies is also increasing. Technical factors such as accuracy and interpretability have been the main criteria for selecting machine learning methods. However, the success of implementing machine learning also affects management factors such as IT departments, operation departments, leadership, and organizational culture. Unfortunately, there are few integrated studies that understand the success factors of machine learning selection in which technical and management factors are considered together. Therefore, the purpose of this paper is to propose and empirically analyze a technology-management integrated model that combines task-tech fit, IS Success Model theory, and John Rice's algorithm selection process model to understand machine learning selection within the company. As a result of a survey of 240 companies that implemented machine learning, it was found that the higher the algorithm quality and data quality, the higher the algorithm-problem fit was perceived. It was also verified that algorithm-problem fit had a significant impact on the organization's innovation and productivity. In addition, it was confirmed that outsourcing and management support had a positive impact on the quality of the machine learning system and organizational cultural factors such as data-driven management and motivation. Data-driven management and motivation were highly perceived in companies' performance.

CS-RANSAC Algorithm using Machine Learning Technique (머신러닝 기법올 적용한 CS-RANSAC 알고리즘)

  • Ko, Seunghyun;Yoon, Ui-Nyoung;Alikhanov, Jumabek;Jo, Geun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.632-635
    • /
    • 2016
  • 증강현실에서 영상과 증강된 콘텐츠 간의 이질감을 줄이기 위해서 정확한 호모그래피 행렬을 추정해야 하며, 정확한 호모그래피 행렬을 추정할때 RANSAC 알고리즘이 널리 사용된다. 그러나 RANSAC 알고리즘은 랜덤 샘플링 과정을 반복적으로 거치기 때문에 불필요한 연산 과정이 발생하고 이로 인해 알고리즘의 효율이 저하된다. 이러한 단점을 극복하기 위해 DCS-RANSAC 알고리즘이 제안되었다. 제안된 DCS-RANSAC 알고리즘은 이미지를 특징점 분포 패턴에 따라 그룹으로 분류하고 각 그룹에 제약조건 문제를 적용하여 불필요한 연산 과정을 줄이고 정확도를 향상시킨 알고리즘이다. 그러나 DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않아 분류시 정확도가 저하되는 경우가 있다. 위의 문제점을 해결하기 위해 본 논문에서는 머신러닝 기법을 통해 이미지들을 자동으로 분류하고 각 그룹마다 각기 다른 제약조건을 적용하는 MCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법을 사용하여 전처리 단계에서 이미지를 분류하고 분류된 이미지에 제약조건을 적용시켜 알고리즘의 처리시간을 줄이고 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 MCS-RANSAC은 DCS-RANSAC 알고리즘에 비해 수행시간이 약 6% 단축되었고 호모그래피 오차율은 약 15% 줄어들었으며 참정보 비율은 2.8% 증가한 것으로 확인되었다.

Machine Learning-based Bedscore Stage Classification Algorithm (머신러닝 기반 욕창 단계 분류 알고리즘)

  • Cho, Young-bok;Yoo, Ha-na
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.326-327
    • /
    • 2022
  • This study is an algorithm for clinical decision-making using machine learning, and it is an algorithm to classify pressure sores to be used in the development of a system to help prevent pressure sores when nursing staff care for patients who lie down for a long time. As a result of machine learning, the learning accuracy of the algorithm was 82.14% and the test accuracy was 82.58%.

  • PDF

A Study on the Logging System Design Suggestion Using Machine Learning (머신러닝을 사용한 로그수집 시스템 설계 제안에 관한 연구)

  • Seo, Deck-Won;Yooun, Ho-sang;Shin, Dong-Il;Shin, Dong-Kyoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.299-301
    • /
    • 2017
  • 현대사회에서는 사이버 해킹 공격이 많이 일어나고 있다. 공격이 증가함에 따라 이를 다양한 방법으로 방어하고 탐지하는 연구가 많이 이루어지고 있다. 본 논문은 OpenIOC, STIX, MMDEF 등과 같은 공격자의 방법론 또는 증거를 식별하는 기술 특성 설명을 수집해 놓은 표현들을 기반을 머신러닝과 logstash라는 로그 수집기를 결합하는 새로운 시스템을 제안한다. 시스템은 pc에 공격이 가해졌을 때 로그 수집기를 사용하여 로그를 수집한 후에 로그의 속성 값들의 리스트를 가지고 머신러닝 알고리즘을 통해 학습시켜 분석을 진행한다. 향후에는 제안된 시스템을 실시간 처리 머신러닝 알고리즘을 사용하여 필요로그정보의 구성을 해주면 자동으로 로그정보를 수집하고 필터와 출력을 거쳐 학습을 시켜 자동 침입탐지시스템으로 발전할 수 있을 것이라 예상된다.

Image Machine Learning System using Apache Spark and OpenCV on Distributed Cluster (Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경 대용량 이미지 머신러닝 시스템)

  • Hayoon Kim;Wonjib Kim;Hyeopgeon Lee;Young Woon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.33-34
    • /
    • 2023
  • 성장하는 빅 데이터 시장과 빅 데이터 수의 기하급수적인 증가는 기존 컴퓨팅 환경에서 데이터 처리의 어려움을 야기한다. 특히 이미지 데이터 처리 속도는 데이터양이 많을수록 현저하게 느려진다. 이에 본 논문에서는 Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경의 대용량 이미지 머신러닝 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 통해 분산 클러스터를 구성하며, OpenCV의 이미지 처리 알고리즘과 Spark MLlib의 머신러닝 알고리즘을 활용하여 작업을 수행한다. 제안하는 시스템을 통해 본 논문은 대용량 이미지 데이터 처리 및 머신러닝 작업 속도 향상 방법을 제시한다.