• 제목/요약/키워드: 맵리듀스 프레임워크

검색결과 54건 처리시간 0.029초

맵리듀스에서 Grouping Sets 질의의 효율적인 계산 기법 (Efficient Computation of Grouping Sets Queries Using MapReduce)

  • 박소정;박은주;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.783-786
    • /
    • 2014
  • 맵리듀스(MapReduce)는 대용량의 데이터를 여러 컴퓨터에서 분산, 병렬 처리하는 프레임워크이다. Grouping sets 질의는 사용자가 지정한 여러 개의 group-by들을 모두 구하는 질의로서, 롤업(rollup)과 큐브(cube)가 너무 많은 결과를 반환하는 단점을 보완하여 원하는 group-by들에 대한 결과만 얻을 수 있도록 한다. 본 논문은 맵리듀스 환경에서 grouping sets 질의를 효율적으로 계산하는 방법을 제안한다. 제안 방법은 grouping sets 질의를 2개의 맵리듀스 잡(job)을 통해 단계적으로 계산한다. 첫 번째 맵리듀스 잡은 grouping sets 질의에 포함된 group-by들이 모두 계산될 수 있는 '부모' group-by를 먼저 계산한다. 두 번째 맵리듀스 잡은 부모 group-by를 입력으로 하여 grouping sets 질의에 포함된 group-by들을 각각 계산한다. 부모 group-by의 크기가 입력 데이터의 크기에 비해 매우 작은 경우, 제안 방법은 입력 데이터로부터 각 group-by를 독립적으로 구하는 단순 방법보다 좋은 성능을 보인다. 실험을 통해 제안 방법이 각 group-by를 독립적으로 구하는 단순 방법보다 좋은 성능을 가짐을 보인다.

클라우드에서 SPARQL 질의 처리를 위한 조인 성능 향상 (Improving Join Performance for SPARQL Query Processing in the Clouds)

  • 최규진;손윤희;이규철
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.700-709
    • /
    • 2016
  • 최근 LOD 데이터의 급격한 증가로 인해 기존의 싱글 머신 시스템을 통한 대량의 LOD 처리는 성능의 한계를 가진다. 이러한 문제를 해결하기 위해 최근 연구들은 분산, 병렬 프레임워크인 맵리듀스를 활용한다. 하지만 맵리듀스를 통해 SPARQL 질의를 처리하기 위해서는 다수의 맵리듀스 잡이 필요하고, 이로 인해 추가적인 비용이 발생하게 된다. 또한, 조인을 위해 불필요한 데이터를 처리해야 하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 SPARQL 질의 처리 시 발생하는 맵리듀스 잡의 개수를 줄이고 Bitmap을 기반으로 조인 인덱스를 작성 후 이용하여 불필요한 데이터 처리를 최소화 하는 방법을 제안한다.

맵리듀스를 사용한 디컴바인드 분산 VQ 코드북 생성 방법 (Decombined Distributed Parallel VQ Codebook Generation Based on MapReduce)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권3호
    • /
    • pp.365-371
    • /
    • 2014
  • 빅 데이터(Big Data)시대로 접어들면서 기존의 IT 환경에서 만들어진 알고리즘들은 하둡과 같은 분산 아키텍처에 그대로 적용할 수 없거나 효율이 떨어진다. 따라서, 맵리듀스와 같은 분산 프레임워크를 적용한 새로운 알고리즘들이 필요하다. 벡터 양자화에 많이 사용되는 Lloyd의 알고리즘도 맵리듀스를 사용하여 개발이 이루어지고 있다. 본 논문에서는 기존의 맵리듀스를 사용한 분산 VQ 코드북 생성 알고리즘을 수정하여 좀 더 빠른 분석 결과를 보일 수 있는 디컴바인드 분산 VQ 코드북 생성 알고리즘을 제안하였다. 제안하는 알고리즘을 빅 데이터에 적용한 결과 기존 방법보다 높은 성능을 보인 것을 확인할 수 있었다.

맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘 (A Dynamic Weapon Allocation Algorithm using Genetic Algorithm in Mapreduce Environments)

  • 박준호;김지은;조길석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2014년도 추계 종합학술대회 논문집
    • /
    • pp.469-470
    • /
    • 2014
  • 동적 무기할당 문제는 전형적인 NP-완전 문제로써 위협하는 표적에 대해 아군의 무기를 적절히 할당하는 문제이다. 이는 매우 시간 제약적인 문제로써 가능한 단 시간 내에 적절한 무기할당 및 대응을 도출하여야 하지만 매우 유동적인 전장 환경에서 이는 쉽지 않다. 최근 이와 같이 높은 복잡성을 가진 빅데이터를 기반으로 하는 응용에서 분산 처리 시스템을 활용한 분석 및 처리에 대한 연구가 큰 주목을 받고 있고, 대표적인 프레임워크로써 맵리듀스가 활용되고 있다. 그러나 맵리듀스는 전체 데이터에 대한 일괄 처리 기능만을 제공하므로 동적 데이터에 대한 유전자 알고리즘의 수행이 쉽지 않고, 최종 결과 도출에 여전히 많은 시간을 필요로 한다. 본 논문에서는 맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘을 제안한다. 제안하는 기법에서는 맵리듀스 환경에서 유전자 알고리즘의 연속적인 데이터 처리의 지원을 위해 새롭게 추가 및 제거된 무기-표적 데이터만을 분석하고, 이를 기 분석 완료된 데이터와 결합하여 최종 결과를 도출한다. 이를 통해, 신속한 동적무기할당의 수행이 가능하다.

  • PDF

맵리듀스를 이용한 정렬 기반의 데이터 큐브 분산 병렬 계산 알고리즘 (Sort-Based Distributed Parallel Data Cube Computation Algorithm using MapReduce)

  • 이수안;김진호
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.196-204
    • /
    • 2012
  • 최근 많은 응용 분야에서 대규모 데이터에 대해 온라인 다차원 분석(OLAP)을 사용하고 있다. 다차원 데이터 큐브는 OLAP 분석에서 핵심 도구로 여긴다. 본 논문에서는 맵리듀스 분산 병렬 처리를 이용하여 효율적으로 데이터 큐브를 계산하는 방법을 연구하고자 한다. 이를 위해, 맵리듀스 프레임워크에서 데이터 큐브 계산 방법으로 잘 알려진 PipeSort 알고리즘을 구현하는 효율적인 방법에 대해서 살펴본다. PipeSort는 데이터 큐브의 한 큐보이드에서 동일한 정렬 순서를 갖는 여러 큐보이드를 한 파이프라인으로 한꺼번에 계산하는 효율적인 방식이다. 이 논문에서는 맵리듀스 프레임워크에서 PipeSort의 파이프라인을 구현한 네 가지 방법을 20대의 서버에서 수행하였다. 실험 결과를 보면, 고차원 데이터에 대해서는 PipeMap-NoReduce 알고리즘이 우수한 성능을 보였으며, 저차원 데이터에 대해서는 Post-Pipe 알고리즘이 더 우수함을 보였다.

맵리듀스에서의 구조적 RDF 데이터 변경 탐지 기법 (Structural Change Detection Technique for RDF Data in MapReduce)

  • 이태휘;임동혁
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.293-298
    • /
    • 2014
  • RDF 데이터의 변경 내용을 탐지하고 이해하는 것은 데이터 웹의 진화 프로세스, 동기화 시스템, 버전 관리 시스템에서 매우 중요한 역할을 한다. 하지만 현재의 연구들은 대용량 데이터를 고려하지 않거나 정확하게 변경 내용을 탐지하지 못한다는 점에서 여전히 미흡하다. 본 논문에서는 대용량 데이터의 처리, 분석을 위해 여러 분야에서 사용되는 맵리듀스 프레임워크 기반의 확장가능하며 효과적인 변경 탐지 기법을 제안한다. 특히, RDF 데이터의 공노드를 비교하는 구조적인 변경 탐지에 초점을 둔다. 이를 위해, 두 개의 맵리듀스 작업으로 이루어진 방법을 사용한다. 첫 번째 작업에서는 공노드에 부여된 내부 아이디가 같은 트리플들을 그룹화하여 공노드에 연결된 경로를 계산한다. 두 번째 작업에서는 같은 경로를 가지는 트리플들을 그룹화하여 헝가리안 메소드를 이용하여 공노드 매칭을 수행한다. 실험을 통해 제안한 방법이 기존 방법보다 더 정확하고 효과적임을 보인다.

맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법 (An Efficient Clustering Method based on Multi Centroid Set using MapReduce)

  • 강성민;이석주;민준기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권7호
    • /
    • pp.494-499
    • /
    • 2015
  • 데이터 사이즈가 증가함에 따라서 대용량 데이터를 분석하여 데이터의 특성을 파악하는 것이 매우 중요해졌다. 본 논문에서는 분산 병렬 처리 프레임워크인 맵리듀스를 활용한 k-Means 클러스터링 기반의 효과적인 클러스터링 기법인 MCSK-Means (Multi centroid set k-Means)알고리즘을 제안한다. k-Means 알고리즘은 임의로 정해지는 k개의 초기 중심점들의 위치에 따라서 클러스터링 결과의 정확도가 많은 영향을 받는 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여, 본 논문에서 제안하는 MCSK-Means 알고리즘은 k개의 중심점들로 이루어진 m개의 중심점 집합을 사용하여 임의로 생성되는 초기 중심점의 의존도를 줄였다. 또한, 클러스터링 단계를 거친 m개의 중심점 집합들에 속한 중심점들에 대하여 직접 계층 클러스터링 알고리즘을 적용하여 k개의 클러스터 중심점들을 생성하였다. 본 논문에서는 MCSK-Means 알고리즘을 맵리듀스 프레임워크 환경에서 개발하여 대용량 데이터를 효율적으로 처리할 수 있도록 하였다.

노드의 가용성을 고려한 하둡 태스크 할당 정책 (Task Assignment Policy for Hadoop Considering Availability of Nodes)

  • 류우석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.103-105
    • /
    • 2017
  • 하둡 맵리듀스(MapReduce)는 사용자가 요청한 잡을 하둡 클러스터에서 효과적으로 병렬 분산 처리하기 위한 프레임워크이다. 맵리듀스의 태스크 스케쥴러는 사용자의 잡 태스크들을 여러 노드에 할당하기 위한 기법이다. 하지만, 기존의 스케쥴러는 노드의 가용 상태에 따라 규모가 동적으로 변화하는 하둡 클러스터를 고려하지 않음으로써 클러스터의 자원을 충분히 활용하지 못하는 문제가 있다. 본 논문에서는 노드의 가용성을 고려하여 잡 태스크를 효과적으로 할당함으로써 하둡 클러스터의 활용성을 높이는 태스크 할당 정책을 제시한다.

  • PDF

하둡 맵리듀스를 이용한 웹 스케일 수준의 공간 지식 추출기 설계 (Design of a Web-Scale Spatial Knowledge Extractor Using Hadoop MapReduce)

  • 이석준;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1326-1329
    • /
    • 2015
  • 최근 들어 공간 지식을 활용한 다양한 서비스들이 개발됨에 따라, 공간 객체들 간의 정성적 공간 관계를 표현한 정성 공간 지식의 수요가 크게 늘어나고 있다. 공간 객체 각각의 세부 정보를 담은 대용량의 공간 데이터들은 개방화가 점차 확대되고 있으나, 공간 객체들 간의 정성적 관계를 표현한 정성 공간 지식은 상대적으로 확보하기 어려운 실정이다. 본 논문에서는 하둡 맵리듀스 병렬 분산 컴퓨터 환경을 이용해, 대용량의 공간 데이터로부터 공간 객체들 간의 위상 관계와 방향 관계를 나타내는 정성 공간 지식을 자동으로 추출하는 공간 지식 추출기를 제안한다. 본 논문에서 제안하는 대용량의 공간 지식 추출기는 맵리듀스 프레임워크를 기반으로 R-트리 색인과 범위 질의들을 효과적으로 이용함으로써, 웹 스케일 수준의 정성 공간 지식을 매우 효율적으로 추출해낸다. Open Street Map (OSM) 공개 데이터를 이용한 성능 분석 실험을 통해, 본 논문에서 제안하는 대용량 공간 지식 추출기의 높은 성능을 확인할 수 있었다.

맵리듀스기반 워크플로우 빅-로그 클러스터링 기법 (A MapReduce-Based Workflow BIG-Log Clustering Technique)

  • 진민혁;김광훈
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-96
    • /
    • 2019
  • 본 논문에서는 분산 워크플로우 실행 이벤트 로그를 수집하고 분류하기 위한 사전 처리 도구로서 맵-리듀스기반 클러스터링 기법을 제안한다. 특히 우리는 볼륨, 속도, 다양성, 진실성 및 가치와 같은 BIG 데이터의 5V 속성에 만족하고 잘 충족되어 있기 때문에 분산 워크플로우 실행 이벤트 로그를 특별히 워크플로우 빅-로그(Workflow BIG-Logs)라고 정의한다. 이 논문에서 개발하는 클러스터링 기술은워크플로우 빅-로그를 기반으로 하는 특정 워크플로 프로세스 마이닝 및 분석 알고리즘의 사전 처리 단계에 적용하기 위한 목적으로 고안된 것이다. 즉, 맵리듀스(Map-Reduce) 프레임워크를 워크플로우 빅-로그 처리 플랫폼으로 사용하고, IEEE XES 표준 데이터 형식을 지원하며, 결국 본 연구에서 개발중에 있는 구조적 정보제어넷기반 워크플로우 프로세스 마이닝 알고리즘인 ${\rho}$-알고리즘의 사전 처리 단계 전용으로 사용되도록 구현된 것이다. 보다 자세하게 말하자면, 워크플로우 빅-로그의 클러스터링 패턴은 단위업무액티버티 기반 클러스터링 패턴과 단위업무 수행자 기반 클러스터링 패턴으로 분류되는데, 특별히 단위업무 액티버티 패턴의 하나인 시간적 워크케이스 패턴과 그의 발생 건수를 재발견하는 맵리듀스 기반 클러스터링 알고리즘을 설계하고 구현하고자 한다. 마지막으로, 우리는 BPI 챌린지에서 공개한 워크플로우 실행 이벤트 로그 데이터세트에 대해 일련의 실험을 수행함으로써 제안된 클러스터링 기법의 기술적 타당성을 검증한다.