맵리듀스(MapReduce)는 대용량의 데이터를 여러 컴퓨터에서 분산, 병렬 처리하는 프레임워크이다. Grouping sets 질의는 사용자가 지정한 여러 개의 group-by들을 모두 구하는 질의로서, 롤업(rollup)과 큐브(cube)가 너무 많은 결과를 반환하는 단점을 보완하여 원하는 group-by들에 대한 결과만 얻을 수 있도록 한다. 본 논문은 맵리듀스 환경에서 grouping sets 질의를 효율적으로 계산하는 방법을 제안한다. 제안 방법은 grouping sets 질의를 2개의 맵리듀스 잡(job)을 통해 단계적으로 계산한다. 첫 번째 맵리듀스 잡은 grouping sets 질의에 포함된 group-by들이 모두 계산될 수 있는 '부모' group-by를 먼저 계산한다. 두 번째 맵리듀스 잡은 부모 group-by를 입력으로 하여 grouping sets 질의에 포함된 group-by들을 각각 계산한다. 부모 group-by의 크기가 입력 데이터의 크기에 비해 매우 작은 경우, 제안 방법은 입력 데이터로부터 각 group-by를 독립적으로 구하는 단순 방법보다 좋은 성능을 보인다. 실험을 통해 제안 방법이 각 group-by를 독립적으로 구하는 단순 방법보다 좋은 성능을 가짐을 보인다.
최근 LOD 데이터의 급격한 증가로 인해 기존의 싱글 머신 시스템을 통한 대량의 LOD 처리는 성능의 한계를 가진다. 이러한 문제를 해결하기 위해 최근 연구들은 분산, 병렬 프레임워크인 맵리듀스를 활용한다. 하지만 맵리듀스를 통해 SPARQL 질의를 처리하기 위해서는 다수의 맵리듀스 잡이 필요하고, 이로 인해 추가적인 비용이 발생하게 된다. 또한, 조인을 위해 불필요한 데이터를 처리해야 하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 SPARQL 질의 처리 시 발생하는 맵리듀스 잡의 개수를 줄이고 Bitmap을 기반으로 조인 인덱스를 작성 후 이용하여 불필요한 데이터 처리를 최소화 하는 방법을 제안한다.
빅 데이터(Big Data)시대로 접어들면서 기존의 IT 환경에서 만들어진 알고리즘들은 하둡과 같은 분산 아키텍처에 그대로 적용할 수 없거나 효율이 떨어진다. 따라서, 맵리듀스와 같은 분산 프레임워크를 적용한 새로운 알고리즘들이 필요하다. 벡터 양자화에 많이 사용되는 Lloyd의 알고리즘도 맵리듀스를 사용하여 개발이 이루어지고 있다. 본 논문에서는 기존의 맵리듀스를 사용한 분산 VQ 코드북 생성 알고리즘을 수정하여 좀 더 빠른 분석 결과를 보일 수 있는 디컴바인드 분산 VQ 코드북 생성 알고리즘을 제안하였다. 제안하는 알고리즘을 빅 데이터에 적용한 결과 기존 방법보다 높은 성능을 보인 것을 확인할 수 있었다.
동적 무기할당 문제는 전형적인 NP-완전 문제로써 위협하는 표적에 대해 아군의 무기를 적절히 할당하는 문제이다. 이는 매우 시간 제약적인 문제로써 가능한 단 시간 내에 적절한 무기할당 및 대응을 도출하여야 하지만 매우 유동적인 전장 환경에서 이는 쉽지 않다. 최근 이와 같이 높은 복잡성을 가진 빅데이터를 기반으로 하는 응용에서 분산 처리 시스템을 활용한 분석 및 처리에 대한 연구가 큰 주목을 받고 있고, 대표적인 프레임워크로써 맵리듀스가 활용되고 있다. 그러나 맵리듀스는 전체 데이터에 대한 일괄 처리 기능만을 제공하므로 동적 데이터에 대한 유전자 알고리즘의 수행이 쉽지 않고, 최종 결과 도출에 여전히 많은 시간을 필요로 한다. 본 논문에서는 맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘을 제안한다. 제안하는 기법에서는 맵리듀스 환경에서 유전자 알고리즘의 연속적인 데이터 처리의 지원을 위해 새롭게 추가 및 제거된 무기-표적 데이터만을 분석하고, 이를 기 분석 완료된 데이터와 결합하여 최종 결과를 도출한다. 이를 통해, 신속한 동적무기할당의 수행이 가능하다.
최근 많은 응용 분야에서 대규모 데이터에 대해 온라인 다차원 분석(OLAP)을 사용하고 있다. 다차원 데이터 큐브는 OLAP 분석에서 핵심 도구로 여긴다. 본 논문에서는 맵리듀스 분산 병렬 처리를 이용하여 효율적으로 데이터 큐브를 계산하는 방법을 연구하고자 한다. 이를 위해, 맵리듀스 프레임워크에서 데이터 큐브 계산 방법으로 잘 알려진 PipeSort 알고리즘을 구현하는 효율적인 방법에 대해서 살펴본다. PipeSort는 데이터 큐브의 한 큐보이드에서 동일한 정렬 순서를 갖는 여러 큐보이드를 한 파이프라인으로 한꺼번에 계산하는 효율적인 방식이다. 이 논문에서는 맵리듀스 프레임워크에서 PipeSort의 파이프라인을 구현한 네 가지 방법을 20대의 서버에서 수행하였다. 실험 결과를 보면, 고차원 데이터에 대해서는 PipeMap-NoReduce 알고리즘이 우수한 성능을 보였으며, 저차원 데이터에 대해서는 Post-Pipe 알고리즘이 더 우수함을 보였다.
RDF 데이터의 변경 내용을 탐지하고 이해하는 것은 데이터 웹의 진화 프로세스, 동기화 시스템, 버전 관리 시스템에서 매우 중요한 역할을 한다. 하지만 현재의 연구들은 대용량 데이터를 고려하지 않거나 정확하게 변경 내용을 탐지하지 못한다는 점에서 여전히 미흡하다. 본 논문에서는 대용량 데이터의 처리, 분석을 위해 여러 분야에서 사용되는 맵리듀스 프레임워크 기반의 확장가능하며 효과적인 변경 탐지 기법을 제안한다. 특히, RDF 데이터의 공노드를 비교하는 구조적인 변경 탐지에 초점을 둔다. 이를 위해, 두 개의 맵리듀스 작업으로 이루어진 방법을 사용한다. 첫 번째 작업에서는 공노드에 부여된 내부 아이디가 같은 트리플들을 그룹화하여 공노드에 연결된 경로를 계산한다. 두 번째 작업에서는 같은 경로를 가지는 트리플들을 그룹화하여 헝가리안 메소드를 이용하여 공노드 매칭을 수행한다. 실험을 통해 제안한 방법이 기존 방법보다 더 정확하고 효과적임을 보인다.
데이터 사이즈가 증가함에 따라서 대용량 데이터를 분석하여 데이터의 특성을 파악하는 것이 매우 중요해졌다. 본 논문에서는 분산 병렬 처리 프레임워크인 맵리듀스를 활용한 k-Means 클러스터링 기반의 효과적인 클러스터링 기법인 MCSK-Means (Multi centroid set k-Means)알고리즘을 제안한다. k-Means 알고리즘은 임의로 정해지는 k개의 초기 중심점들의 위치에 따라서 클러스터링 결과의 정확도가 많은 영향을 받는 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여, 본 논문에서 제안하는 MCSK-Means 알고리즘은 k개의 중심점들로 이루어진 m개의 중심점 집합을 사용하여 임의로 생성되는 초기 중심점의 의존도를 줄였다. 또한, 클러스터링 단계를 거친 m개의 중심점 집합들에 속한 중심점들에 대하여 직접 계층 클러스터링 알고리즘을 적용하여 k개의 클러스터 중심점들을 생성하였다. 본 논문에서는 MCSK-Means 알고리즘을 맵리듀스 프레임워크 환경에서 개발하여 대용량 데이터를 효율적으로 처리할 수 있도록 하였다.
하둡 맵리듀스(MapReduce)는 사용자가 요청한 잡을 하둡 클러스터에서 효과적으로 병렬 분산 처리하기 위한 프레임워크이다. 맵리듀스의 태스크 스케쥴러는 사용자의 잡 태스크들을 여러 노드에 할당하기 위한 기법이다. 하지만, 기존의 스케쥴러는 노드의 가용 상태에 따라 규모가 동적으로 변화하는 하둡 클러스터를 고려하지 않음으로써 클러스터의 자원을 충분히 활용하지 못하는 문제가 있다. 본 논문에서는 노드의 가용성을 고려하여 잡 태스크를 효과적으로 할당함으로써 하둡 클러스터의 활용성을 높이는 태스크 할당 정책을 제시한다.
최근 들어 공간 지식을 활용한 다양한 서비스들이 개발됨에 따라, 공간 객체들 간의 정성적 공간 관계를 표현한 정성 공간 지식의 수요가 크게 늘어나고 있다. 공간 객체 각각의 세부 정보를 담은 대용량의 공간 데이터들은 개방화가 점차 확대되고 있으나, 공간 객체들 간의 정성적 관계를 표현한 정성 공간 지식은 상대적으로 확보하기 어려운 실정이다. 본 논문에서는 하둡 맵리듀스 병렬 분산 컴퓨터 환경을 이용해, 대용량의 공간 데이터로부터 공간 객체들 간의 위상 관계와 방향 관계를 나타내는 정성 공간 지식을 자동으로 추출하는 공간 지식 추출기를 제안한다. 본 논문에서 제안하는 대용량의 공간 지식 추출기는 맵리듀스 프레임워크를 기반으로 R-트리 색인과 범위 질의들을 효과적으로 이용함으로써, 웹 스케일 수준의 정성 공간 지식을 매우 효율적으로 추출해낸다. Open Street Map (OSM) 공개 데이터를 이용한 성능 분석 실험을 통해, 본 논문에서 제안하는 대용량 공간 지식 추출기의 높은 성능을 확인할 수 있었다.
본 논문에서는 분산 워크플로우 실행 이벤트 로그를 수집하고 분류하기 위한 사전 처리 도구로서 맵-리듀스기반 클러스터링 기법을 제안한다. 특히 우리는 볼륨, 속도, 다양성, 진실성 및 가치와 같은 BIG 데이터의 5V 속성에 만족하고 잘 충족되어 있기 때문에 분산 워크플로우 실행 이벤트 로그를 특별히 워크플로우 빅-로그(Workflow BIG-Logs)라고 정의한다. 이 논문에서 개발하는 클러스터링 기술은워크플로우 빅-로그를 기반으로 하는 특정 워크플로 프로세스 마이닝 및 분석 알고리즘의 사전 처리 단계에 적용하기 위한 목적으로 고안된 것이다. 즉, 맵리듀스(Map-Reduce) 프레임워크를 워크플로우 빅-로그 처리 플랫폼으로 사용하고, IEEE XES 표준 데이터 형식을 지원하며, 결국 본 연구에서 개발중에 있는 구조적 정보제어넷기반 워크플로우 프로세스 마이닝 알고리즘인 ${\rho}$-알고리즘의 사전 처리 단계 전용으로 사용되도록 구현된 것이다. 보다 자세하게 말하자면, 워크플로우 빅-로그의 클러스터링 패턴은 단위업무액티버티 기반 클러스터링 패턴과 단위업무 수행자 기반 클러스터링 패턴으로 분류되는데, 특별히 단위업무 액티버티 패턴의 하나인 시간적 워크케이스 패턴과 그의 발생 건수를 재발견하는 맵리듀스 기반 클러스터링 알고리즘을 설계하고 구현하고자 한다. 마지막으로, 우리는 BPI 챌린지에서 공개한 워크플로우 실행 이벤트 로그 데이터세트에 대해 일련의 실험을 수행함으로써 제안된 클러스터링 기법의 기술적 타당성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.