• Title/Summary/Keyword: 맵리듀스 프레임워크

Search Result 54, Processing Time 0.029 seconds

A Study on the Effects of Intermediate Data on the Performance of the MapReduce Framework (맵리듀스 프레임워크의 중간 데이터가 성능에 미치는 영향에 관한 연구)

  • Kim, Shin-gyu;Eom, Hyeonsang;Yeom, Heon Y.
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.130-133
    • /
    • 2012
  • 맵리듀스 프레임워크는 개발의 편의성, 높은 확장성, 결함 내성 기능을 제공하며 다양한 대용량 데이터 처리에 사용되고 있다. 또한, 최근의 데이터의 폭발적 증가는 높은 확장성을 제공하는 맵리듀스 프레임워크의 도입의 필요성을 더욱 증가시키고 있다. 이 경우 하나의 단일 클러스터에서 처리할 수 있는 계산 용량을 넘어설 수 있으며, 이를 위하여 클라우드 컴퓨팅 서비스 등에서 계산자원을 빌려오게 된다. 하지만 현재의 맵리듀스 프레임워크는 단일 클러스터 환경을 가정하고 설계되었기에 여러 개의 클러스터로 이루어진 환경에서 수행시킬 경우 전체 계산자원의 이용률이 떨어져서 투입된 자원에 비해 전체적인 성능이 낮아지는 경우가 발생하게 된다. 본 연구에서는 이의 원인이 맵과 리듀스 단계 사이에 존재하는 중간결과의 전송에 있음을 밝히고, 이의 전체 맵리듀스 프레임웍의 성능에 미치는 영향에 대하여 분석해보았다.

Large-scale Spatial Reasoning using MapReduce Framework (맵리듀스 프레임워크를 이용한 대용량 공간 추론 방식)

  • Nam, Sang-Ha;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.769-772
    • /
    • 2014
  • Jeopardy 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는 인물, 지리, 사건, 역사 등을 포함하는 광범위한 지식베이스와 이를 토대로 한 빠른 시공간 추론 능력이 필요하다. 본 논문에서는 대표적인 병렬 분산 컴퓨팅 환경인 하둡/맵리듀스 프레임워크를 이용하여 방향 및 위상 관계를 추론하는 효율적인 대용량의 공간 추론 알고리즘을 제시한다. 본 알고리즘에서는 하둡/맵리듀스 프레임워크의 특성을 고려하여 병렬 분산처리의 효과를 높이기 위해, 지식 분할 문제를 맵 단계에서 해결하고, 이것을 토대로 리듀스 단계에서 효과적으로 새로운 공간 지식을 유도하도록 설계하였다. 또한, 본 알고리즘은 초기 공간 지식베이스로부터 새로운 지식을 유도할 수 있는 기능뿐만 아니라 초기 공간 지식베이스의 불일치성도 미연에 감지함으로써 불필요한 지식 유도 작업을 계속하지 않도록 설계하였다. 본 연구에서는 하둡/맵리듀스 프레임워크로 구현한 대용량 공간 추론기와 샘플공간 지식베이스를 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제시한 공간 추론 알고리즘과 공간 추론기의 높은 성능을 확인 할 수 있었다.

A Key Distribution Method for load balancing in MapReduce Framework (MapReduce 프레임워크에서 균등한 작업 부하 분산를 위한 키 분배 기법에 대한 연구)

  • Son, Ji-Hoon;Choi, Hyun-Sik;Chung, Yon-Dohn
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.53-56
    • /
    • 2011
  • 맵리듀스는 대용량의 데이터를 병렬로 처리하기 위해 제안된 프레임워크이다. 맵리듀스 프레임워크는 대용량의 데이터를 처리하기에 적합하기 때문에 많은 응용에서 사용되고 있다. 하지만 이것은 불균등한 데이터 분포에 대해 취약하다는 단점이 있다. 본 논문에서 우리는 맵리듀스 프레임워크에서 균등한 작업 부하 분산을 위한 키 분배 기법을 제안한다. 우리는 실험을 통해 제안 기법이 기존의 맵리듀스보다 불균등한 분포를 갖는 데이터를 효율적으로 처리한다는 것을 보였다.

Design and Implementation of a Large-Scale Time Reasoner using MapRedcue Framework (맵리듀스 프레임워크를 이용한 대용량 시간 추론기 설계 및 구현)

  • Kim, Jong-Hoon;Kim, Jong-Hwan;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.828-831
    • /
    • 2015
  • 시맨틱 웹에서 실세계의 복잡한 사건들은 시간의 흐름에 따라 새로운 결과 또는 사실들이 생겨나기 때문에 시간이 포함된 지식에 대한 추론능력이 필수적이다. 본 논문에서는 대표적 병렬 분산 컴퓨팅 환경인 맵리듀스 프레임워크를 이용해, 새로운 시간 관계를 추론할 수 있는 효율적인 대용량 시간 추론 알고리즘을 제안한다. 또한, 맵리듀스 프레임워크로 구현한 대용량 시간 추론기의 성능을 분석하기 위해 샘플 시간 지식베이스를 이용한 실험들을 수행하고, 그 결과를 소개한다.

A study of MapReduce Algorithm for Bigdata (빅데이터 처리를 위한 맵리듀스 연구)

  • Kim, Man-Yun;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.341-342
    • /
    • 2014
  • 지난 10년간 데이터의 폭발적인 증가로 우리는 빅데이터 시대를 맞이하게 되었다. 특히, 최근 몇 년 사이 소셜 네트워크의 발전으로 인해 발생하는 데이터의 양이 증가하면서, 이를 처리하기 위한 시스템으로 하둡이 등장하였다. 이전에는 저장 및 처리할 수 없었던 대용량 데이터를 오픈소스인 하둡의 등장으로 누구나가 대용량 데이터를 처리할 수 있는 시스템을 운영할 수 있게 된 것이다. 대규모 처리 분석을 위한 소프트웨어 프레임워크인 하둡은 클라우드 컴퓨팅의 대표적인 기술로 널리 사용되고 있다. 하둡은 크게 데이터의 저장을 담당하는 HDFS(Hadoop Distribute File System)와 데이터를 처리하는 맵리듀스로 나뉜다. 본 논문에서는 기존의 MapReduce와 차세대 맵리듀스로 불리는 YARN을 비교 분석하고 맵리듀스의 용도와 효율적인 활용방안을 제시한다.

  • PDF

Iceberg Cube Parallel Computation using MapReduce (맵리듀스를 이용한 빙산 큐브 병렬 계산)

  • Lee, Su-An;Kim, Jin-Ho;Moon, Yang-Sae;Loh, Woong-Kee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06a
    • /
    • pp.25-26
    • /
    • 2010
  • 대용량 데이터의 효율적 분석을 위해 데이터 뷰브가 연구되었으며, 데이터 큐브 계산의 고비용 문제점을 해결하기 위하여 큐브의 일부 영역만을 계산하는 빙산 큐브가 등장하였다. 빙산 큐브는 저장 공간의 감소, 집중적인 분석 등의 장점이 있으나, 여전히 많은 계산과 저장 공간을 필요로 하는 단점이 있다. 본 논문에서는 이러한 문제점을 해결하는 실용적인 방법으로 대용량 문제를 분산하여 처리하는 분산 병렬 컴퓨팅 기술인 맵리듀스(MapReduce) 프레임워크를 사용하여 분산 병렬 빙산 큐브인 MR-Naive와 MR-BUC 알고리즘을 제안한다. 실험을 통해 맵리듀스 프레임워크를 통한 빙사 큐브 계산이 효율적으로 분산 병렬 처리 됨을 확인하였다.

  • PDF

A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images (이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템)

  • Bae, Yuseok;Park, Jongyoul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • With the advent of the era of digital big data, the Hadoop platform has become widely used in various fields. However, the Hadoop MapReduce framework suffers from problems related to the increase of the name node's main memory and map tasks for the processing of large number of small files. In addition, a method for running C++-based tasks in the MapReduce framework is required in order to conjugate GPUs supporting hardware-based data parallelism in the MapReduce framework. Therefore, in this paper, we present a face detection system that generates a sequence file for images to process big data for images in the Hadoop platform. The system also deals with tasks for GPU-based face detection in the MapReduce framework using Hadoop Pipes. We demonstrate a performance increase of around 6.8-fold as compared to a single CPU process.

A Comparison of Multi- Way Join Algorithms in MapReduce (맵리듀스를 이용한 멀티웨이 조인 알고리즘의 비교)

  • Myung, Jae-Seok;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.127-130
    • /
    • 2011
  • 맵리듀스는 데이터의 분산 및 병렬 처리를 돕는 프레임워크로서, 하둡과 같은 오픈 소스 맵리듀스 구현이 배포되면서 많은 연구가 이루어지고 있다. 맵리듀스를 이용한 조인은 대용량 데이터 분석을 위한 필수적인 연산이며, 여러 개의 테이블을 한 번의 맵리듀스로 조인하기 위한 멀티웨이 조인 알고리즘에 대한 연구도 계속 진행되고 있다. 이 논문에서는 반복(iteration) 기반 멀티웨이 조인과 중복(replication) 기반 멀티웨이 조인 알고리즘의 장단점을 분석한다. 또한 두 가지 방식의 조인 알고리즘의 단점을 보완하여 하나의 통합적인 2단계 멀티웨이 세미조인을 제시하고, 이를 기존의 방식과 비교한다. 결과적으로, 2단계 멀티웨이 세미조인은 반복 기반의 조인에 비하여 입출력 비용을 절감하고, 중복 기반의 조인에 비하여 커뮤니케이션 비용을 절감한다.

A Performance Comparison of Distributed Data Processing Frameworks for Large Scale Graph Data (대규모 분산 처리 프레임워크에 따른 대규모 그래프 처리 성능 비교)

  • Bae, Kyung-sook;Kong, Yong-joon;Shim, Tak-kil;Shin, Eui-seob;Seong, Kee-kin
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.469-472
    • /
    • 2012
  • 최근 IT 분야의 화두로 '빅 데이터'가 떠오르고 있으며 많은 기업들이 이를 분석하여 이익을 증대하기 위한 노력을 하고 있다. 이에 구글은 초기에 맴리듀스라고 하는 대용량 분산처리 프레임워크 기술을 확보하여 이를 기반으로 한 서비스를 제공하고 있다. 그러나 스마트 단말 및 소설미디어 등의 출현으로 다양한 디지털 정보들이 그래프로 표현되는 추세가 강화되고 있으며 기존의 맵리듀스로 이를 처리하는 데에 한계를 느낀 구글은 Pregel 이라는 그래프 형 자료구조에 최적화된 또 다른 분산 프레임워크를 개발하였다. 본 논문에서는 일반적인 그래프 형 데이터가 갖는 특성을 분석하고, 대용량 그래프 데이터를 처리하는데 있어 맵리듀스가 갖는 한계와 Pregel은 어떤 방식으로 이를 극복하고 있는지를 소개한다. 또한 실험을 통하여 데이터의 특성에 따른 적절한 프레임워크의 선택이 대용량 데이터를 처리하는 데에 있어서 얼마나 큰 영향을 미치는지 확인한다.

Design and Implementation of a Large-Scale Spatial Reasoner Using MapReduce Framework (맵리듀스 프레임워크를 이용한 대용량 공간 추론기의 설계 및 구현)

  • Nam, Sang Ha;Kim, In Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.397-406
    • /
    • 2014
  • In order to answer the questions successfully on behalf of the human in DeepQA environments such as Jeopardy! of the American quiz show, the computer is required to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a scalable spatial reasoning algorithm for deriving efficiently new directional and topological relations using the MapReduce framework, one of well-known parallel distributed computing environments. The proposed reasoning algorithm assumes as input a large-scale spatial knowledge base including CSD-9 directional relations and RCC-8 topological relations. To infer new directional and topological relations from the given spatial knowledge base, it performs the cross-consistency checks as well as the path-consistency checks on the knowledge base. To maximize the parallelism of reasoning computations according to the principle of the MapReduce framework, we design the algorithm to partition effectively the large knowledge base into smaller ones and distribute them over multiple computing nodes at the map phase. And then, at the reduce phase, the algorithm infers the new knowledge from distributed spatial knowledge bases. Through experiments performed on the sample knowledge base with the MapReduce-based implementation of our algorithm, we proved the high performance of our large-scale spatial reasoner.